
O�chain Nitro
Security Assessment

March 14, 2022

Prepared for:

Steven Goldfeder

Offchain Labs

Prepared by:

Josselin Feist and Gustavo Grieco

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Nitro Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and mutually agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Nitro Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 7

Project Summary 11

Project Goals 12

Project Targets 14

Project Coverage 15

Arbitrator and WAVM 15

ArbOS 16

Automated Testing Results 19

Codebase Maturity Evaluation 21

Summary of Findings: Arbitrator 23

Detailed Findings: Arbitrator 24

1. WASM binaries lack memory protections crucial for preventing corruption 24

2. Certain WASM binaries can trigger wasm-validate and arbitrator crashes 26

3. Unresolved clippy warnings 28

4. Risk of undefined behavior caused by export of fieldless enums from Rust to C 30

Summary of Findings: WAVM 32

Detailed Findings: WAVM 33

1. Block-depth limit is not checked on-chain 33

2. Inconsistencies in arbitrator and one-step-proof contract error statuses 36

Trail of Bits 3 Offchain Nitro Security Assessment
PUBLIC

3. Lack of on-chain validation of branching instruction destinations 39

4. Discrepancy in the casting rules of the arbitrator and one-step-proof contract 42

5. Inconsistent handling of out-of-bounds index access in the execution of global
state access opcodes 44

Summary of Findings: go-ethereum 46

Detailed Findings: go-ethereum 47

1. Lack of documentation on geth changes 47

2. Upstream fixes missing from geth fork 48

3. totalBalanceDelta does not account for ether sent to self-destructed contracts 49

Summary of Findings: ArbOS 51

Detailed Findings: ArbOS 53

1. Unimplemented features could facilitate an ArbOS node crash 53

2. Confusing retryable ticket–redemption mechanism 55

3. Calls to selfdestruct(this) break the totalBalanceDelta bookkeeping 57

4. Issues in the Go and Rust compilers’ WASM back ends 59

5. Risk of a node crash due to unchecked ticket-opening errors 60

6. Unspecified gas rules for precompiled Nitro contracts 62

7. Fragile expectedBalanceDelta bookkeeping 64

8. Processing of malformed retryable ticket messages can cause an ArbOS crash 66

9. Invalid transactions count toward the block gas limit 69

10. Confusing rule for calculating the amount of gas remaining in a block 71

11. Use of an unofficial Brotli library for message compression 73

12. Escrow addresses can be used to move stolen funds 75

13. Confusing EOA address remapping rules 77

Trail of Bits 4 Offchain Nitro Security Assessment
PUBLIC

14. Unreachable mechanism for disabling the default aggregator 79

15. Risk of a node crash due to unchecked PosterDataCost errors 81

16. Infinite loop caused by parsing of malformed sequencer messages 83

17. ArbOS bottleneck caused by RLP decoding loop 85

18. Broken gasLeft computation 87

19. Aggregators can block user transactions by setting a high fixed fee 89

20. Aggregators can steal each other’s tips 91

21. Aggregators can steal extra fees by updating their rates 93

22. Aggregators can censor the redemption of retryable tickets 95

23. Fragile retryable ticket ID scheme 97

Summary of Findings: ArbNode 99

Detailed Findings: ArbNode 100

1. Use of time.After() in select statements can lead to memory leaks 100

2. Broadcast client configuration allows the use of insecure TLS versions 102

Summary of Findings: Smart Contracts 103

Detailed Findings: Smart Contracts 104

1. Lack of a contract existence check on delegatecall will result in unexpected
behavior 104

2. Unreachable overflow checks in currentRequiredStake 106

3. ERC20Rollup is incompatible with nonstandard ERC20s 108

4. Integer type inconsistency 110

5. Inclusion of dead code 112

6. Unclear expectations surrounding updates to the stake requirements 114

7. Process for removing old stakes is not scalable 117

Trail of Bits 5 Offchain Nitro Security Assessment
PUBLIC

8. Failure to decrement the amount of time remaining in a challenge 119

9. Lack of a lower limit on numSteps in a challenge enables attackers to halt a
challenge’s progress 121

10. Challenges can move from the EXECUTION state to the BLOCK state 123

Summary of Recommendations 125

A. Vulnerability Categories 126

B. Code Maturity Categories 128

C. Code Quality Recommendations 130

D. WAVM Code and Design Recommendations 131

E. Fuzzer-Based Test Cases for Arbitrum Nitro 132

Integrating Fuzzing and Coverage Measurement into the Development Cycle 141

F. Detecting Destructible Contracts 143

G. System Invariants 145

Smart Contracts 145

General 145

Challenge 145

Rollup 145

Rollup - Challenge 146

ArbOS Bridge 146

ArbOS Smart Contracts 147

WAVM 147

ArbOS 147

Trail of Bits 6 Offchain Nitro Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of its Arbitrum Nitro system. From
January 10 to March 11, 2022, a team of two consultants conducted a security review of the
client-provided source code, with 16 person-weeks of effort. Details of the project’s
timeline, test targets, and coverage are provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the target system, including access to the source code and
documentation. We performed static and dynamic testing of the target system and its
codebase, using both automated and manual processes.

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

Trail of Bits 7 Offchain Nitro Security Assessment
PUBLIC

EXPOSURE ANALYSIS

Severity Count

High 12

Medium 8

Low 10

Informational 13

Undetermined 4

CATEGORY BREAKDOWN

Category Count

Access Controls 2

Auditing and Logging 5

Denial of Service 1

Configuration 1

Data Validation 33

Patching 1

Undefined Behavior 4

Trail of Bits 8 Offchain Nitro Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● TOB-NITRO-WAVM-1
The block-depth limit is not checked on-chain.

● TOB-NITRO-WAVM-2
The arbitrator and one-step-proof contract perform two comparisons when reading
inbox messages; however, because they do not perform the checks in the same
order, they will emit different statuses if there is an error.

● TOB-NITRO-WAVM-3
The one-step-proof contracts lack on-chain validation of the destinations of
branching instructions.

● TOB-NITRO-WAVM-4
The arbitrator and the one-step-proof contract adhere to different casting rules.

● TOB-NITRO-WAVM-5
When executing the global state access opcodes, the arbitrator and the
one-step-proof contract exhibit different behavior if they access an index out of
bounds.

● TOB-NITRO-ARBOS-5
An attacker could leverage the lack of error checks in the ticket-opening process to
cause a node crash.

● TOB-NITRO-ARBOS-9
Invalid transactions reduce the amount of gas available in a block.

● TOB-NITRO-ARBOS-15
Because the errors returned by PosterDataCost are not checked, they can lead to
a node crash.

● TOB-NITRO-ARBOS-18
The gasLeft amount is calculated incorrectly.

● TOB-NITRO-SC-1
The lack of a contract existence check on a delegatecall in the
AdminFallbackProxy contract can result in unexpected behavior.

● TOB-NITRO-SC-8
The timeLeft value, which indicates the amount of time remaining in a challenge,
is never decremented.

Trail of Bits 9 Offchain Nitro Security Assessment
PUBLIC

● TOB-NITRO-SC-9
There is no lower limit on the number of steps in a challenge; as a result, one
participant could block the other from taking any actions, preventing the challenge
from progressing.

● TOB-NITRO-SC-10
The state of a challenge can change from EXECUTION to BLOCK.

Trail of Bits 10 Offchain Nitro Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Josselin Feist, Consultant Gustavo Grieco, Consultant
josselin@trailofbits.com gustavo.grieco@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

January 6, 2022 Pre-project kickoff call

January 18, 2022 Status update meeting #1

January 24, 2022 Status update meeting #2

January 31, 2022 Status update meeting #3

February 7, 2022 Status update meeting #4

February 21, 2022 Status update meeting #5

February 28, 2022 Status update meeting #6

March 7, 2022 Status update meeting #7

March 14, 2022 Report readout meeting

May 25, 2022 Delivery of final report

Trail of Bits 11 Offchain Nitro Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Offchain Labs
Arbitrum Nitro components, including the Ethereum smart contracts, the arbitrator, the
WAVM, and ArbOS.

We sought to answer the following questions about the Ethereum smart contracts:

● Are there gaps between the abstract protocol and its implementation?

● Are there any inconsistencies between the documentation and the implementation?

● Is it possible to steal funds from the protocol?

● Could an attacker disrupt the rollup, challenge, or confirmation process?

● Could the outbox execute a withdrawal without a valid confirmation?

● Is it possible to create a node that cannot be challenged?

● Is it possible to evade or delay a challenge?

● Is the Bridge contract flexible enough to support any smart contract?

We sought to answer the following questions regarding the Arbitrator:

● Are the semantics of valid WASM binaries preserved in the transpilation to WAVM?

● Do the WASM and WAVM implementations adhere to the WASM specification and
reference implementation?

● Is the execution of WASM and WAVM code always completed in a reasonable
amount of time?

● Does the WAVM behavior match the on-chain implementation?

Finally, we sought to answer the following questions regarding ArbOS:

● Does the ArbOS EVM implementation adhere to the behavior described in the
Yellow Paper? If it deviates from that behavior, how do the deviations affect the
correctness and security of the smart contracts deployed on Arbitrum?

● Are incoming messages properly parsed, validated, and processed?

Trail of Bits 12 Offchain Nitro Security Assessment
PUBLIC

● Could ArbOS be forced to execute a transition to an unexpected AVM status (e.g.,
Errored or TooFar)?

● Is the ArbOS bookkeeping correct and updated when necessary? Is there any effect
from its internal state that is not properly committed or reverted?

Trail of Bits 13 Offchain Nitro Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the Offchain Labs Arbitrum Nitro system.
We worked from the same GitHub repository
(https://github.com/OffchainLabs/nitro) throughout the audit. However, the code
was significantly updated during the audit, and we reviewed several commits for each
component. The most notable commits are provided below.

nitro/arbitrator

Version c41f610b

Type Virtual machine

Platform Rust

nitro/arbos

Versions 5366994a and d8ab8da8

Type L2 operating system

Platform Go

nitro/solgen

Version 77a0422b (and a fix introduced in PR #294)

Type Smart contracts

Platform Ethereum

Trail of Bits 14 Offchain Nitro Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

Ethereum Smart Contracts

The Arbitrum Nitro system includes Ethereum smart contracts that manage and secure a
rollup chain on L1. The most relevant contracts are listed below.

Inbox. The Inbox allows users to send messages to ArbOS. We reviewed the inbox’s receipt
of L2 messages, focusing on the impact that user-controlled input can have on the whole
system. We manually reviewed the use of events in the construction, validation, and
delivery of messages.

SequencerInbox and Bridge. The Bridge contract executes cross-chain transactions
sent from L2, and the SequencerInbox controls the inclusion of messages in the ArbOS
inbox. We focused on the changes made since the last audit and reviewed the contracts’
interactions with ArbOS.

OneStepProver and related one-step-proof (OSP) contracts. The OneStepProver
contract emulates WAVM instructions and verifies the correctness of proofs. Our review of
this and other OSP contracts was limited to their interactions with the ChallengeManager;
we focused on identifying any flaws in the contracts’ handling of basic errors as well as any
deviations from the arbitrator implementation.

Rollup. The Rollup contract enables validators to stake their funds and to challenge a
state. We checked how validators interact with this contract when participating in the
staking and challenging protocols, particularly how users add, move, or remove stakes;
create, confirm, or reject nodes; remove inactive stakers (zombies); and start and finish
challenges.

ChallengeManager. The ChallengeManager enables validators to resolve challenges in a
finite number of steps by using bisection and the OSP contracts. We reviewed the
processes of creating, validating, advancing, and finishing challenges, focusing on the
bisection of blocks and steps. We also reviewed the ways in which the OSP is invoked and
their results are verified. Finally, we checked whether the timeout mechanism works as
expected, effectively limiting the duration of challenges.

Arbitrator and WAVM

The arbitrator is a command-line utility that receives WASM code as input and is used by
validators to execute WAVM code. Although the arbitrator assumes this WASM code to be
trusted, the arbitrator still uses the WebAssembly Binary Toolkit to ensure that the WASM

Trail of Bits 15 Offchain Nitro Security Assessment
PUBLIC

code is well formed before transpiling it. Validators can then use the arbitrator to execute
the code and to generate and verify proofs from the code’s execution.

We performed a manual review and automated testing to identify any issues in the
following areas:

● The parsing, validation, and processing of WASM code

● The WASM–WAVM conversion and the processing and execution of WAVM code

● The verification, serialization, and hashing of the machine status

We looked for discrepancies in the Rust and Solidity implementations of the WAVM. We
performed a manual review to look for flaws that could cause an opcode to behave
differently, with a focus on the machine.step function and the solgen one-step-proof
contracts. This part of the review was only done manually. We sought to identify any
deviations in the pre- and postconditions applied to the state, as well as any missing
conditions.

We also reviewed and tested the execution of WASM and WAVM code, looking for
deviations between the WASM emulation and the WASM reference implementation that
could affect the arbitrator's correctness and the validity of its proofs.

ArbOS

ArbOS is the trusted L2 operating system. It isolates untrusted contracts from each other,
tracks and limits their resource usage, and manages the mechanism that collects fees from
users to fund the operation of a chain's validators.

ArbOS handles trusted and untrusted messages originating from Ethereum. We reviewed
the handling of incoming messages and the flow of assets. Our review of the escrow
mechanism, which allows certain assets to be saved in order to be collected or burned
later, focused on how ether is handled and how gas is tracked and burned.

We also reviewed the translation and emulation of the EVM. The ArbOS code includes the
go-ethereum codebase, with a small number of modifications. We analyzed these
modifications to ensure that the go-ethereum codebase adheres to the behavior
described in the Yellow Paper and the EVM reference implementation. We also looked for
ways to disrupt or break the processing of blocks or the gas accounting.

Additionally, we reviewed ArbOS’s use of external libraries to handle untrusted data that is
parsed, decompressed, or processed. These include the Brotli decompression and
Recursive Length Prefix (RLP) encoding / decoding libraries. We looked for unexpected

Trail of Bits 16 Offchain Nitro Security Assessment
PUBLIC

error conditions that could break important ArbOS security or correctness properties. We
also checked whether ArbOS could be forced to loop or to consume an excessive amount
of resources when processing new incoming messages from L1.

Finally, we reviewed the special ArbOS smart contract operations that allow privileged and
unprivileged users to perform important tasks in the Arbitrum system. In particular, we
analyzed how retryable tickets are redeemed, canceled, and trimmed when they expire.

We were unable to perform a comprehensive review of every ArbOS component; for
example, we performed only a partial review of the ArbNode component.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform testing or comprehensive
testing of certain system elements, which may warrant further review.

For example, we did not review the external go-ethereum and ArbOS external libraries.
Thus, we did not check the correctness of the Brotli decompression implementation.
Similarly, we did not review the security or correctness of the WASM external libraries such
as the SoftFloat3 floating-point library.

We did not review the following system elements:

● The glue code that connect WASM and Go / Rust code

● ArbOS’s Merkle tree accumulator

● ArbOS’s internal storage structure

● The system’s economic incentives

● The tuning of system parameters (e.g., the challenge timeout parameter)

The following elements were covered in the audit but would benefit from further review:

● The gas accounting performed by ArbOS, including in the ticket-handling process

● The ChallengeManager’s state machine, including the verification of segments and
the handling of state transitions in the event of VM errors

● The correctness of the OSP contracts and any deviations from the WAVM
implementation

● The handling of error statuses (e.g., TooFar)

The following directories from the Nitro codebase were not covered or were covered only
partially:

Trail of Bits 17 Offchain Nitro Security Assessment
PUBLIC

https://github.com/ucb-bar/berkeley-softfloat-3
https://github.com/ucb-bar/berkeley-softfloat-3

○ arbnode

○ arbstate (only part of the inbox was covered)

○ arbutil

○ blsSignatures

○ broadcastclient

○ cmd

○ fastcache

○ reproducible-wasm

○ statetransfer

○ system_tests

○ util

○ validator

○ wavmio

○ wsbroadcastserver

Trail of Bits 18 Offchain Nitro Security Assessment
PUBLIC

Automated Testing Results

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

We used the following tools in the automated testing phase of this project:

● Slither is a static analysis framework that can statically verify algebraic relationships
between Solidity variables. We used Slither to look for common Solidity flaws.

Echidna is a smart contract fuzzer that can rapidly test security properties via malicious,
coverage-guided test case generation. We used Echidna to test for fundamental Rollup
properties, devoting five weeks of CPU time to the testing of each property.

Rollup. Using the original Rollup code, Trail of Bits developed a model to replicate the
behavior of the Rollup contracts in Solidity. This was necessary to perform property-based
testing of the Rollup contract code, as detailed in appendix E.

Property Tool Result

If the preconditions are met, createChallenge never reverts. Echidna Passed

If a challenge can be created, then commonEndTime >=
proposedTimes[0], and commonEndTime >=
proposedTimes[1].

Echidna Passed

If the preconditions are met, removeOldZombies never
reverts.

Echidna Passed

If the preconditions are met, removeZombie never reverts. Echidna Failed (Code

quality

issue)

For every address, x,
if isStaked(x), then !isZombie(x).

Echidna Passed

For every address, x,
if latestStakedNode(x) <= latestConfirmed(), then

Echidna Passed

Trail of Bits 19 Offchain Nitro Security Assessment
PUBLIC

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna

currentChallenge(x) == NO_CHAL_INDEX.

Trail of Bits 20 Offchain Nitro Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic While ArbOS and the arbitrator appear to handle integer
overflows and underflows correctly, the Rollup contract
re-implements built-in Solidity arithmetic operations
incorrectly, resulting in unreachable code. Moreover,
several of the bookkeeping operations in ArbOS lack
documentation and testing (including the gas- and
asset-related bookkeeping operations).

Moderate

Authentication /
Access Controls

The protocol’s extensive composability makes it difficult to
track which components should access other components.
The lack of documentation on both the different actors
and the numerous privileged operations increases the
likelihood of mistakes.

Satisfactory

Decentralization While the system is presented as permissionless, it is
heavily centralized. For example, the Rollup contract’s
owner can pause, upgrade, or otherwise change critical
parameters of the Rollup; moreover, the number of
participating validators is limited by a validator whitelist,
and the owner of a chain is allowed to upgrade ArbOS.
However, the Offchain Labs team indicated that it plans to
remove these privileges in the future.

Moderate

Trail of Bits 21 Offchain Nitro Security Assessment
PUBLIC

Documentation While the Arbitrum documentation provides a good
high-level overview of the system, it lacks detail on the
implementation and omits several system invariants.
Additionally, the documentation does not explain the
workings of the ArbOS escrow account, account store, or
gas system; the purpose of the escrow account is also
unclear. Appendix G contains a list of the system
invariants that should be documented.

Moderate

Low-Level
Manipulations

Several low-level manipulations would benefit from better
documentation and testing; these include various
type-casting operations (TOB-NITRO-ARBITATOR-3), the
block-depth limit (TOB-NITRO-WAVM-1), the use of Merkle
trees (e.g., the maintenance of leaves’ paths upon tree
updates), and the use of a proxy architecture and
delegatecalls (TOB-NITRO-SC-1).

Moderate

Front-Running
Resistance

Several privileged operations may create undocumented /
unexpected front-running risks; these include calls to the
precompiled Nitro contracts that change the system’s
behavior (TOB-NITRO-ARBOS-6) and the censorship of
transactions through the block gas limit.

Moderate

Testing and
Verification

The system’s unit test coverage should be improved. As
detailed in appendix E, ArbOS would benefit from fuzzing
of its individual components as well its processing of inbox
messages, which triggers operations in several other
components. Additionally, the arbitrator code should be
stress-tested through a differential fuzzing campaign
focused on WASM–WAVM translation and WASM / WAVM
execution. Finally, we recommend performing
property-based testing of smart contracts including the
Rollup to ensure that their properties hold.

Moderate

Trail of Bits 22 Offchain Nitro Security Assessment
PUBLIC

Summary of Findings: Arbitrator

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 WASM binaries lack memory protections crucial
for preventing corruption

Undefined
Behavior

Low

2 Certain WASM binaries can crash wasm-validate
or the arbitrator

Data
Validation

Informational

3 Unresolved clippy warnings Auditing and
Logging

Informational

4 Risk of undefined behavior caused by export of
fieldless enums from Rust to C

Undefined
Behavior

Informational

Trail of Bits 23 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: Arbitrator

1. WASM binaries lack memory protections crucial for preventing corruption

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-NITRO-ARBITATOR-1

Target: go-ethereum, arbitrator/wasm-libraries/soft-float

Description
The WASM binaries do not feature modern binary protections that are available out of the
box in native binaries.

Arbitrum compiles several components to WASM to resolve disputes using proofs over the
executed instructions. These binaries do not feature the same security protections of the
natives ones; they lack most of the common checks that native binaries perform when a
memory-unsafe operation occurs:

Figure 1.1: An overview of the attack primitives and the missing defenses in the WASM binaries

Trail of Bits 24 Offchain Nitro Security Assessment
PUBLIC

The USENIX 2020 paper “Everything Old is New Again: Binary Security of WebAssembly”
describes in depth the binary defenses that are missing and the new attacks that can be
executed in WASM binaries if memory-unsafe operations are performed.

While Go is a memory-safe language, it is still possible to write memory-unsafe code. Such
code is used in some parts of geth and its C/C++ dependencies.

// byteArrayBytes returns a slice of the byte array v.

func byteArrayBytes(v reflect.Value, length int) []byte {

var s []byte

hdr := (*reflect.SliceHeader)(unsafe.Pointer(&s))

hdr.Data = v.UnsafeAddr()

hdr.Cap = length

hdr.Len = length

return s

}

Figure 1.2: go-ethereum/rlp/unsafe.go#L27-L35

Any C/C++ libraries linked in the WAVM execution (such as the softfloat library) may also be
affected by the omission of these protections.

Exploit Scenario
Eve finds a memory-unsafe operation in geth or one of its dependencies. While the native
versions of geth would immediately stop the execution if the stack or heap bookkeeping
were invalid, the WASM version will continue the execution, enabling the creation of invalid
proofs.

Recommendations
Short term, perform extensive testing of any memory-unsafe code that is compiled to
WASM to protect the system against exploitable memory issues.

Long term, review the state of the WASM compiler to evaluate the maturity of the binary
protections.

Trail of Bits 25 Offchain Nitro Security Assessment
PUBLIC

https://www.unibw.de/patch/papers/usenixsecurity20-wasm.pdf
https://pkg.go.dev/unsafe
https://github.com/ucb-bar/berkeley-softfloat-3

2. Certain WASM binaries can trigger wasm-validate and arbitrator crashes

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBITATOR-2

Target: Arbitrator

Description
The arbitrator performs the proof-generation process and invokes wasm-validate to
ensure that WASM binaries are well formed. After a WASM binary has been validated, it is
parsed and processed into a WAVM machine for execution in the generation of a proof.

$./prover --help
arbitrator-prover 0.1.0

USAGE:
prover [FLAGS] [OPTIONS] <binary>

Figure 2.1: Part of the arbitrator-prover command line

However, certain WASM binaries can trigger a panic in the arbitrator:

thread 'main' panicked at 'Module has no code', prover/src/machine.rs:448:9
thread 'main' panicked at 'Cannot call `finish()` on `Err(Err::Incomplete(_))`: this
result means that the parser does not have enough data to decide, you should gather
more data and try to reapply the parser instead',
/home/g/.cargo/registry/src/github.com-1ecc6299db9ec823/nom-7.0.0/src/internal.rs:41
:9
thread 'main' panicked at 'range end index 64 out of range for slice of length 2',
prover/src/lib.rs:51:75
thread 'main' panicked at 'range start index 1 out of range for slice of length 0',
prover/src/machine.rs:441:17
thread 'main' panicked at 'Out-of-bounds data memory init with offset 4 and size 0',
prover/src/machine.rs:388:21

thread 'main' panicked at 'range start index 1 out of range for slice of length 0',

prover/src/machine.rs:455:17

Figure 2.2: A list of different arbitrator panics

Certain WASM binaries can even cause a crash in wasm-validate:

Trail of Bits 26 Offchain Nitro Security Assessment
PUBLIC

$ gdb --args wasm-validate

wasm-fuzzing-corpus/wasm/d3bac5bb8061dfb6c918851a38b8af75cc14d11d

...

Program received signal SIGSEGV, Segmentation fault.

0x00005555555c2210 in wabt::ReadBinary(void const*, unsigned long,

wabt::BinaryReaderDelegate*, wabt::ReadBinaryOptions const&) ()

(gdb) bt

#0 0x00005555555c2210 in wabt::ReadBinary(void const*, unsigned long,

wabt::BinaryReaderDelegate*, wabt::ReadBinaryOptions const&) ()

#1 0x000055555559f47c in wabt::ReadBinaryIr(char const*, void const*, unsigned

long, wabt::ReadBinaryOptions const&, std::vector<wabt::Error,

std::allocator<wabt::Error> >*, wabt::Module*) ()

#2 0x0000555555597a89 in ProgramMain(int, char**) ()

#3 0x00007ffff767abf7 in __libc_start_main (main=0x5555555896a0 <main>, argc=2,

argv=0x7fffffffdd58, init=<optimized out>, fini=<optimized out>,

rtld_fini=<optimized out>, stack_end=0x7fffffffdd48)

at ../csu/libc-start.c:310

#4 0x0000555555596f1e in _start ()

Figure 2.3: A stack trace showing a crash in wasm-validate 1.0.24

Exploit Scenario
Alice tries to generate a proof, but the arbitrator crashes, blocking her from resolving the
dispute.

Recommendations
Short term, ensure that the arbitrator and wasm-validate will not crash regardless of
their input.

Long term, use afl.rs or another fuzzing tool to stress-test the arbitrator code.

Trail of Bits 27 Offchain Nitro Security Assessment
PUBLIC

3. Unresolved clippy warnings

Severity: Informational Difficulty: High

Type: Auditing and Logging Finding ID: TOB-NITRO-ARBITATOR-3

Target: Arbitrator

Description
We ran static analyzer Clippy over the arbitrator code to check the code for the most
common Rust mistakes.

The execution of Clippy resulted in 248 warnings, including warnings regarding unsafe
casting operations, the use of identical if and elif conditions, and missing
documentation.

warning: casting `u64` to `usize` may truncate the value on targets with 32-bit wide

pointers
--> prover/src/machine.rs:1217:36

|
1217 | self.pc.inst = inst.argument_data as usize;

| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
|

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#cast_possible_truncation

[...]

error: this `if` has identical blocks
--> prover/src/machine.rs:1599:63

|

1599 | if idx > self.global_state.bytes32_vals.len() {
| ___^

1600 | | self.status = MachineStatus::Errored;

1601 | | } else if !module

| |_________________^
|

= note: `#[deny(clippy::if_same_then_else)]` on by default

note: same as this
--> prover/src/machine.rs:1604:17

Trail of Bits 28 Offchain Nitro Security Assessment
PUBLIC

https://github.com/rust-lang/rust-clippy/

|

1604 | / {

1605 | | self.status = MachineStatus::Errored;
1606 | | }

| |_________________^

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#if_same_then_else

[...]

warning: unsafe function's docs miss `# Safety` section
--> prover/src/lib.rs:291:1

|

291 | / pub unsafe extern "C" fn arbitrator_gen_proof(mach: *mut Machine) ->
RustByteArray {

292 | | let mut proof = (*mach).serialize_proof();
293 | | let ret = RustByteArray {

294 | | ptr: proof.as_mut_ptr(),
... |
299 | | ret

300 | | }

| |_^

|

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#missing_safety_doc

[...]

Figure 3.1: Warnings raised in the execution of cargo clippy --workspace -- -W
clippy::pedantic

Recommendations
Short term, address all of the warnings raised by Clippy.

Long term, integrate Clippy into the CI pipeline by using the following command: cargo
clippy --workspace -- -W clippy::pedantic.

Trail of Bits 29 Offchain Nitro Security Assessment
PUBLIC

4. Risk of undefined behavior caused by export of fieldless enums from Rust
to C

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-NITRO-ARBITATOR-4

Target: arbitrator/prover/src/lib.rs

Description
The arbitrator exports fieldless enums to the C representation. In C, the size of an enum is
defined by the implementation; as a result, the export of a fieldless enum may lead to
undefined behavior.

For example, the arbitrator exports the fieldless CMachineStatus enum to its C
representation.

// C requires enums be represented as `int`s, so we need a new type for this :/

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[repr(C)]

pub enum CMachineStatus {

Running,

Finished,
Errored,
TooFar,

}

Figure 4.1: arbitrator/prover/src/lib.rs#L238-L246

The Rust documentation includes the following warning:

repr(C) is equivalent to one of repr(u*) (see the next section) for fieldless enums.

The chosen size is the default enum size for the target platform's C application

binary interface (ABI). Note that enum representation in C is implementation

defined, so this is really a "best guess". In particular, this may be incorrect when

the C code of interest is compiled with certain flags.

Figure 4.2: https://doc.rust-lang.org/nomicon/other-reprs.html#reprc

The Rust Unsafe Code Guidelines also include a warning:

Trail of Bits 30 Offchain Nitro Security Assessment
PUBLIC

https://doc.rust-lang.org/nomicon/other-reprs.html#reprc

Note: some C compilers offer flags (e.g., -fshort-enums) that change the layout of

enums from the default settings that are standard for the platform. The integer size

selected by #[repr(C)] is defined to match the default settings for a given target,

when no such flags are supplied. If interop with code that uses other flags is

desired, then one should either specify the sizes of enums manually or else use an

alternate target definition that is tailored to the compiler flags in use.

Figure 4.3:
https://github.com/rust-lang/unsafe-code-guidelines/reference/src/layout

/enums.md#layout-of-a-fieldless-enum

Thus, the translation of CMachineStatus depends on the version of the C compiler and
the flags it uses.

Recommendations
Short term, avoid using fieldless enums with repr(C).

Long term, carefully review the Rust documentation and Unsafe Code Guidelines,
particularly the warnings about code representation and evaluate any risky features used
in the protocol.

Trail of Bits 31 Offchain Nitro Security Assessment
PUBLIC

https://github.com/rust-lang/unsafe-code-guidelines/blob/e8c504dbfe5dd340155f646128ddc5124d189857/reference/src/layout/enums.md#layout-of-a-fieldless-enum
https://github.com/rust-lang/unsafe-code-guidelines/blob/e8c504dbfe5dd340155f646128ddc5124d189857/reference/src/layout/enums.md#layout-of-a-fieldless-enum

Summary of Findings: WAVM

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Block-depth limit is not checked on-chain Data
Validation

High

2 Inconsistencies in arbitrator and one-step-proof
contract error statuses

Data
Validation

High

3 Lack of on-chain validation of branching
instruction destinations

Data
Validation

High

4 Divergence in the casting rules between the
arbitrator and the one step-proof contract

Data
Validation

High

5 Inconsistent handling of out-of-bounds index
access in the execution of global state access
opcodes

Data
Validation

High

Trail of Bits 32 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: WAVM

1. Block-depth limit is not checked on-chain

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-WAVM-1

Target: machine.rs, OneStepProver0.sol

Description
The arbitrator maintains a block-depth limit that is not checked on-chain. This lack of data
validation could enable an attacker to prove an invalid state on-chain.

When executing block and branching instructions, the arbitrator checks that block_depth
is not less than zero:

Opcode::Block => {

[...]

self.pc.block_depth += 1;
[...]

}
Opcode::EndBlock => {

assert!(self.pc.block_depth > 0);

self.pc.block_depth -= 1;
[...]

}

Opcode::EndBlockIf => {
[...]

assert!(self.pc.block_depth > 0);
self.pc.block_depth -= 1;
[...]

}
}
[...]

Opcode::Branch => {
assert!(self.pc.block_depth > 0);

self.pc.block_depth -= 1;
[...]

}

Trail of Bits 33 Offchain Nitro Security Assessment
PUBLIC

Opcode::BranchIf => {
[...]

assert!(self.pc.block_depth > 0);

self.pc.block_depth -= 1;
[...]

}

}

Figure 1.1: arbitrator/prover/src/machine.rs#L1179-L1235

The one-step-proof contract lacks such a check:

function executeBlock(Machine memory mach, Module memory, Instruction calldata

inst, bytes calldata) internal pure {

uint32 targetPc = uint32(inst.argumentData);

require(targetPc == inst.argumentData, "BAD_BLOCK_PC");

PcStacks.push(mach.blockStack, targetPc);

}

function executeBranch(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

mach.functionPc = PcStacks.pop(mach.blockStack);

}

function executeBranchIf(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

Value memory cond = ValueStacks.pop(mach.valueStack);

if (cond.contents != 0) {

// Jump to target

mach.functionPc = PcStacks.pop(mach.blockStack);

}

}

[...]

function executeEndBlock(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

PcStacks.pop(mach.blockStack);

}

Trail of Bits 34 Offchain Nitro Security Assessment
PUBLIC

function executeEndBlockIf(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

Value memory cond = ValueStacks.peek(mach.valueStack);

if (cond.contents != 0) {

PcStacks.pop(mach.blockStack);

}

}

Figure 1.2: solgen/src/osp/OneStepProver0.sol#L58-L296

As a result, the generated WAVM code will have an incorrect block-depth limit, which could
enable an attacker to prove an incorrect state on-chain and wrongfully win a challenge.

Exploit Scenario
Eve finds a transaction that causes the WAVM code to execute more EndBlock instructions
than necessary. None of the nodes can execute the transaction. While the Offchain Labs
team is working on a fix, Eve creates a rollup node that includes the buggy transaction.
Alice and Bob then challenge Eve’s rollup node. Because the block-depth limit is not
validated on-chain, Eve is able to prove the execution, effectively stealing Alice’s and Bob’s
stakes.

Recommendations
Short term, have the one-step-proof contract track the block-depth limit.

Long term, implement the WAVM code and design recommendations outlined in appendix
D.

Trail of Bits 35 Offchain Nitro Security Assessment
PUBLIC

2. Inconsistencies in arbitrator and one-step-proof contract error statuses

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-WAVM-2

Target: machine.rs, OneStepProver0.sol

Description
The arbitrator and the OneStepProver0 contract check two conditions when executing the
ReadInboxMessage opcode. However, they perform these checks in different orders,
which can lead to inconsistencies.

Execution of the ReadInboxMessage opcode can result in two error statuses: TOO_FAR
and Errored.

The one-step-proof contract first checks whether the index of the inbox sequencer is too
far (i.e., whether it exceeds the machine’s inbox limit), in which case the TooFar status is
triggered. It then checks whether the pointer references the correct location; if it does not,
the Errored status is triggered.

if (inst.argumentData == Instructions.INBOX_INDEX_SEQUENCER && msgIndex >=

execCtx.maxInboxMessagesRead) {

mach.status = MachineStatus.TOO_FAR;
return;

}

if (ptr + 32 > mod.moduleMemory.size || ptr % LEAF_SIZE != 0) {
mach.status = MachineStatus.ERRORED;

return;
}

Figure 2.1: solgen/src/osp/OneStepProverHostIo.sol#L238-L246

The arbitrator checks these conditions in the opposite order: it first checks the pointer
location and then checks the index.

if ptr as u64 + 32 > module.memory.size() {

self.status = MachineStatus::Errored;
} else {

Trail of Bits 36 Offchain Nitro Security Assessment
PUBLIC

assert!(
inst.argument_data <= (InboxIdentifier::Delayed as u64),

"Bad inbox identifier"
);

let inbox_identifier =
argument_data_to_inbox(inst.argument_data).unwrap();

if let Some(message) =

self.inbox_contents.get(&(inbox_identifier, msg_num)) {
let offset = usize::try_from(offset).unwrap();
let len = std::cmp::min(32,

message.len().saturating_sub(offset));
let read = message.get(offset..(offset +

len)).unwrap_or_default();

if module.memory.store_slice_aligned(ptr.into(), read) {
self.value_stack.push(Value::I32(len as u32));

} else {
self.status = MachineStatus::Errored;

}

} else {
self.status = MachineStatus::TooFar;

}

turn;

}

Figure 2.2: arbitrator/prover/src/machine.rs#L1659-L1678

If both conditions evaluate to true (the pointer references an incorrect location and the
index is too far), the arbitrator’s status will be Errored, and the one-step-proof contract’s
status will be TooFar.

An attacker could leverage this discrepancy to make validators believe that the Errored
status had been triggered when the on-chain contract’s status was actually TooFar.

Exploit Scenario
Eve finds a transaction that causes the inbox pointer to reference an incorrect location and
the index of the inbox sequencer to be too far. She then creates a corresponding rollup
node. None of the nodes can execute the transaction. While the Offchain Labs team is
working on a fix, Eve creates a node leading to the TooFar status. Alice and Bob challenge
Eve’s rollup node. Eve is able to prove the execution, effectively stealing Alice’s and Bob’s
stakes.

Trail of Bits 37 Offchain Nitro Security Assessment
PUBLIC

Recommendations
Short term, have the arbitrator and the one-step-proof contract check the two conditions in
the same order when executing ReadInboxMessage opcode. This will ensure that the
arbitrator and the one-step-proof contract have the same status if there is an error in the
execution of ReadInboxMessage.

Long term, implement the WAVM code and design recommendations outlined in appendix
D.

Trail of Bits 38 Offchain Nitro Security Assessment
PUBLIC

3. Lack of on-chain validation of branching instruction destinations

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-WAVM-3

Target: machine.rs, OneStepProver0.sol

Description
The arbitrator checks that the size of the next block / instruction is within the code size
limit, but the one-step-proof contract does not. Without this check, an attacker might be
able to prove an invalid state on-chain

The arbitrator, through Machine::test_next_instruction, checks that the next
instruction to be executed is within the code size limit. It performs this check for all
branching instructions (ArbitraryJumpIf, Branch, and BranchIf instructions).

Opcode::ArbitraryJumpIf => {
let x = self.value_stack.pop().unwrap();
if !x.is_i32_zero() {

self.pc.inst = inst.argument_data as usize;
Machine::test_next_instruction(&module, &self.pc);

}
}
Opcode::Branch => {

assert!(self.pc.block_depth > 0);
self.pc.block_depth -= 1;
self.pc.inst = self.block_stack.pop().unwrap();
Machine::test_next_instruction(&module, &self.pc);

}
Opcode::BranchIf => {

let x = self.value_stack.pop().unwrap();
if !x.is_i32_zero() {

assert!(self.pc.block_depth > 0);
self.pc.block_depth -= 1;
self.pc.inst = self.block_stack.pop().unwrap();
Machine::test_next_instruction(&module, &self.pc);

}
}

Figure 3.1: arbitrator/prover/src/machine.rs#L1214-L1235

fn test_next_instruction(module: &Module, pc: &ProgramCounter) {

assert!(module.funcs[pc.func].code.len() > pc.inst);

Trail of Bits 39 Offchain Nitro Security Assessment
PUBLIC

}

Figure 3.2: arbitrator/prover/src/machine.rs#L1120-L1122

It executes the same check when a block is created but does so without calling
test_next_instruction:

Opcode::Block => {

let idx = inst.argument_data as usize;

self.block_stack.push(idx);

self.pc.block_depth += 1;

assert!(module.funcs[self.pc.func].code.len() > idx);

}

Figure 3.3: arbitrator/prover/src/machine.rs#L1179-L1184

This check is missing from the one-step-proof contract:

function executeBlock(Machine memory mach, Module memory, Instruction calldata

inst, bytes calldata) internal pure {

uint32 targetPc = uint32(inst.argumentData);

require(targetPc == inst.argumentData, "BAD_BLOCK_PC");

PcStacks.push(mach.blockStack, targetPc);

}

function executeBranch(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

mach.functionPc = PcStacks.pop(mach.blockStack);

}

function executeBranchIf(Machine memory mach, Module memory, Instruction

calldata, bytes calldata) internal pure {

Value memory cond = ValueStacks.pop(mach.valueStack);

if (cond.contents != 0) {

// Jump to target

mach.functionPc = PcStacks.pop(mach.blockStack);

}

}

Trail of Bits 40 Offchain Nitro Security Assessment
PUBLIC

Figure 3.4: solgen/src/osp/OneStepProver0.sol#L58-L74

As a result, if the WAVM code loads an incorrect instruction (one that exceeds the code size
limit), an attacker may be able to prove an incorrect state on-chain and wrongfully win a
challenge.

Exploit Scenario
Eve finds a transaction that causes the WAVM code to branch to an instruction that exceeds
the code size limit. She then creates a rollup node containing the transaction. None of the
nodes can execute the transaction. While the Offchain Labs team is working on a fix, Alice
and Bob challenge Eve’s rollup node. Eve is able to prove the execution, effectively stealing
Alice’s and Bob’s stakes.

Recommendations
Short term, take the following steps:

● Revert in the one-step-proof contract for branching instruction and Block if the
next block / instruction is not within the code size limit. This will ensure that the
one-step-proof contract has the same behavior as the validator code.

● Have the arbitrator use test_next_instruction instead of an ad hoc check when
executing the Opcode::Block opcode. The ad hoc check it currently performs is a
duplicate of test_next_instruction, which increases the complexity of the code
and the likelihood of bugs.

Long term, implement the WAVM code and design recommendations outlined in appendix
D.

Trail of Bits 41 Offchain Nitro Security Assessment
PUBLIC

4. Discrepancy in the casting rules of the arbitrator and one-step-proof
contract

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-WAVM-4

Target: machine.rs, OneStepProver0.sol

Description
The arbitrator and the one-step-proof contract do not follow the same casting rules; nor do
they perform the same checks for casting overflows. These inconsistencies could enable an
attacker to prove an invalid state on-chain.

For example, when executing the GetGlobalStateBytes32 opcode, the arbitrator checks
that the pointer is a u32, while the one-step-proof contract does not:

Opcode::GetGlobalStateBytes32 => {

let ptr = self.value_stack.pop().unwrap().assume_u32();

let idx = self.value_stack.pop().unwrap().assume_u32() as usize;

Figure 4.1: arbitrator/prover/src/machine.rs#L1596-L11599

function executeGetOrSetBytes32(

Machine memory mach,

Module memory mod,

GlobalState memory state,

Instruction calldata inst,

bytes calldata proof

) internal pure {

uint256 ptr = ValueStacks.pop(mach.valueStack).contents;

uint32 idx = Values.assumeI32(ValueStacks.pop(mach.valueStack));

Figure 4.2: solgen/src/osp/OneStepProverHostIo.sol#L38-L46

As a result, if a bug in the generated code causes the pointer value to exceed 2**32, the
arbitrator will not be able to process the transaction, but the one-step-proof contract will
be able to process it. An attacker could use such a discrepancy to steal validators’ stakes.

Trail of Bits 42 Offchain Nitro Security Assessment
PUBLIC

Exploit Scenario
Eve finds a transaction that causes the size of the pointer in GetGlobalStateBytes32 to
exceed 2**32. None of the nodes can execute the transaction. While the Offchain Labs
team is working on a fix, Eve creates a rollup node that includes the buggy transaction.
Alice and Bob then challenge Eve’s rollup node. Eve is able to prove the execution,
effectively stealing Alice’s and Bob’s stakes.

Recommendations
Short term, ensure that for each use of assume_X in the arbitrator code, there exists a
corresponding use of Values.assumeI32 in the one-step-proof contract code.

Long term, implement the WAVM code and design recommendations outlined in appendix
D.

Trail of Bits 43 Offchain Nitro Security Assessment
PUBLIC

5. Inconsistent handling of out-of-bounds index access in the execution of
global state access opcodes

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-WAVM-5

Target: machine.rs, OneStepProver0.sol

Description
The arbitrator and the one-step-proof contract exhibit different behavior if they access an
index out of bounds when executing the global state access opcodes. This divergence could
enable an attacker to prove an invalid state on-chain.

For example, when executing the GetGlobalStateBytes32 opcode, the arbitrator will
panic if the index is equal to global_state.u64_vals.len (the else branch is used for
idx == self.global_state.u64_vals.len().

if idx > self.global_state.u64_vals.len() {

self.status = MachineStatus::Errored;

} else {
self.value_stack

.push(Value::I64(self.global_state.u64_vals[idx]));
}

Figure 5.1: arbitrator/prover/src/machine.rs#L1645-L1650

By contrast, an index of global_state.u64_vals.len() would trigger the Errored
status in the one-step-proof contract:

if (idx >= GlobalStates.U64_VALS_NUM) {

mach.status = MachineStatus.ERRORED;

return;

}

Figure 5.2: solgen/src/osp/OneStepProverHostIo.sol#L83-L86

This means that if GetGlobalStateBytes32 were used with an index of
global_state.u64_vals.len(), the node would panic, but the one-step-proof contract
could be used to prove the execution.

Trail of Bits 44 Offchain Nitro Security Assessment
PUBLIC

There are similar inconsistencies in the arbitrator’s and one-step-proof contract’s handling
of the following opcodes:

● GetGlobalStateBytes32

● SetGlobalStateBytes32

● SetGlobalStateU64

Exploit Scenario
Eve finds a transaction that causes an index of global_state.u64_vals.len() to be
used in the execution of GetGlobalStateBytes32. None of the nodes can execute the
transaction. While the Offchain Labs team is working on a fix, Eve creates a rollup node that
includes the buggy transaction. Alice and Bob then challenge Eve’s rollup node. Eve is able
to prove the execution, effectively stealing Alice’s and Bob’s stakes.

Recommendations
Short term, use the >= operator instead of > in the length checks when executing the
GetGlobalStateBytes32, SetGlobalStateBytes32, GetGlobalStateU64, and
SetGlobalStateU64 opcodes. This will ensure that both implementations of the WAVM
code have the same behavior.

Long term, implement the WAVM code and design recommendations outlined in appendix
D.

Trail of Bits 45 Offchain Nitro Security Assessment
PUBLIC

Summary of Findings: go-ethereum

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Lack of documentation on geth changes Auditing and
Logging

Undetermined

2 Upstream fixes missing from geth fork Auditing and
Logging

Undetermined

3 totalBalanceDelta does not account for ether sent
to self-destructed contracts

Data
Validation

Low

Trail of Bits 46 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: go-ethereum

1. Lack of documentation on geth changes

Severity: Undetermined Difficulty: High

Type: Auditing and Logging Finding ID: TOB-NITRO-GETH-1

Target: go-ethereum

Description
Offchain Labs's fork of geth includes several modifications that are undocumented..

These include the modifications made to bind.go, shown in figure 1.1:

Figure 1.1: The differences between bind.go in the Offchain Labs fork of geth and the original
version of geth

The purpose and implications of these changes are unclear.

Recommendations
Short term, keep the changes made to geth to a minimum, and document all changes.
Clear documentation will aid in the maintenance of the codebase and the merging of
upstream changes.

Long term, establish a detailed process for applying upstream geth changes, and ensure
that all changes are applied with as little delay as possible.

Trail of Bits 47 Offchain Nitro Security Assessment
PUBLIC

2. Upstream fixes missing from geth fork

Severity: Undetermined Difficulty: High

Type: Auditing and Logging Finding ID: TOB-NITRO-GETH-2

Target: go-ethereum

Description
Offchain Labs’s fork of geth omits the changes introduced in geth 1.10.15. These changes
include a fix for a peer-to-peer connection issue that could cause nodes to become locked:

This release resolves a few regressions introduced by the previous release. Most importantly,
it fixes an issue that could cause peer-to-peer 'eth' connections to lock up.

Figure 2.1: An excerpt of the geth 1.10.15 release notes

Recommendations
Short term, apply the geth 1.10.15 changes, which include a fix for a peer-to-peer attack
vector.

Long term, establish a detailed process for applying upstream geth upstream, and ensure
that all changes are applied with as little delay as possible.

Trail of Bits 48 Offchain Nitro Security Assessment
PUBLIC

https://github.com/ethereum/go-ethereum/releases/tag/v1.10.15

3. totalBalanceDelta does not account for ether sent to self-destructed
contracts

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-GETH-3

Target: go-ethereum, arbos/block_processor.go

Description
A transfer of ether to a contract that has self-destructed will not be reflected in the
totalBalanceDelta value.

Offchain Labs introduced totalBalanceDelta as part of its modifications to geth. The
value represents the total amount of ETH that has been added to or removed from the
chain.

When a contract executes selfdestruct, it is marked for destruction, and its balance is
set to zero:

func (s *StateDB) Suicide(addr common.Address) bool {
stateObject := s.getStateObject(addr)
if stateObject == nil {

return false
}
s.journal.append(suicideChange{

account: &addr,
prev: stateObject.suicided,
prevbalance: new(big.Int).Set(stateObject.Balance()),

})
stateObject.markSuicided()
s.totalBalanceDelta.Sub(s.totalBalanceDelta, stateObject.data.Balance)
stateObject.data.Balance = new(big.Int)

return true
}

Figure 3.1: core/state/statedb.go#L447-L462

When the transaction is finalized, the accounts marked for destruction (and their balances)
are deleted:

Trail of Bits 49 Offchain Nitro Security Assessment
PUBLIC

Figure 3.2: Yellow paper (section6.2, “Execution”)

Any ether sent to an account marked for destruction will effectively be burned. However,
the balance delta (tracked through totalBalanceDelta in the modified geth version) will
not account for the burning of the ether. As a result, the value of totalBalanceDelta will
be incorrect.

This issue does not appear to have a direct impact on ArbOS; however, it could prevent
Offchain Labs from pushing the geth modifications upstream.

Exploit Scenario
A new invariant is added to the Arbitrum Nitro system. This new invariant will cause a node
panic if the actual total supply of ether (based on the total of all accounts’ balances) is
different from the total supply tracked through totalBalanceDelta. Eve sends ether to a
contract marked for destruction. The transaction results in a total supply discrepancy,
causing the Arbitrum Nitro system to enter an invalid state.

Recommendations
Short term, revisit the tracking of totalBalanceDelta, and design a bookkeeping system
that is robust against self-destruct corner cases. (See TOB-NITRO-ARBOS-3 and
TOB-NITRO-ARBOS-7 for additional examples of corner cases.)

Long term, develop comprehensive centralized documentation on the system’s invariants
and thoroughly test those invariants.

Trail of Bits 50 Offchain Nitro Security Assessment
PUBLIC

https://ethereum.github.io/yellowpaper/paper.pdf

Summary of Findings: ArbOS

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Unimplemented features could facilitate an
ArbOS node crash

Data
Validation

High

2 Confusing retryable ticket–redemption
mechanism

Auditing and
Logging

Low

3 Calls to selfdestruct(this) break the
totalBalanceDelta bookkeeping

Data
Validation

Low

4 Issues in the Go and Rust compilers’ WASM back
ends

Undefined
Behavior

Undetermined

5 Risk of a node crash due to unchecked
ticket-opening errors

Data
Validation

High

6 Unspecified gas rules for precompiled Nitro
contracts

Undefined
Behavior

Low

7 Fragile expectedBalanceDelta bookkeeping Data
Validation

Informational

8 Processing of malformed retryable ticket
messages can cause an ArbOS crash

Data
Validation

Informational

9 Invalid transactions count toward the block gas
limit

Data
Validation

Medium

10 Confusing rule for calculating the amount of gas
remaining in a block

Data
Validation

Informational

11 Use of an unofficial Brotli library for message
compression

Data
Validation

Undetermined

Trail of Bits 51 Offchain Nitro Security Assessment
PUBLIC

12 Escrow addresses can be used to move stolen
funds

Auditing and
Logging

Low

13 Confusing EOA address remapping rules Access
Controls

Medium

14 Unreachable mechanism for disabling the default
aggregator

Access
Controls

Informational

15 Risk of a node crash due to unchecked
PosterDataCost errors

Data
Validation

High

16 Infinite loop caused by parsing of malformed
sequencer messages

Data
Validation

Medium

17 ArbOS bottleneck caused by RLP decoding loop Data
Validation

Medium

18 Broken gasLeft computation Data
Validation

Medium

19 Aggregators can block user transactions by setting
a high fixed fee

Data
Validation

Medium

20 Aggregator can steal the tip sent to other
aggregators

Data
Validation

Medium

21 Aggregators can steal extra fees by updating their
rates

Data
Validation

Medium

22 Aggregators can censor the redemption of
retryable tickets

Data
Validation

Low

23 Fragile retryable ticket ID scheme Data
Validation

Informational

Trail of Bits 52 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: ArbOS

1. Unimplemented features could facilitate an ArbOS node crash

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-1

Target: go-ethereum

Description
ArbOS can receive L2 messages of different types. However, several of these message
types have not been implemented. If the ArbOS nodes receive a message of an
unimplemented type, they will panic; an attacker could take advantage of this behavior to
remotely crash the ArbOS nodes.

The unimplemented message types are shown in figures 1.1 and 1.2.

case L1MessageType_L2Message:

return parseL2Message(bytes.NewReader(msg.L2msg), msg.Header.Poster,

msg.Header.RequestId, 0)

case L1MessageType_SetChainParams:

panic("unimplemented")

case L1MessageType_EndOfBlock:

return nil, nil

case L1MessageType_L2FundedByL1:

panic("unimplemented")

[...]

case L1MessageType_BatchForGasEstimation:

panic("unimplemented")

Figure 1.1: arbos/incomingmessage.go#L172-L187

case L2MessageKind_NonmutatingCall:

panic("unimplemented")

Trail of Bits 53 Offchain Nitro Security Assessment
PUBLIC

[...]

case L2MessageKind_SignedCompressedTx:

panic("unimplemented")

Figure 1.2: arbos/incomingmessage.go#L235-L276

Exploit Scenario
Eve sends a BatchForGasEstimation message to the chain. As a result, the node that
Bob is running crashes.

Recommendations
Short term, implement all missing message types and use errors instead of panics to
handle any issues caused by unimplemented features. Using panics to handle these issues
is risky and could allow an attacker to remotely crash the nodes.

Long term, create a robust PR merging process and ensure that unimplemented features
are not merged into the master branch of the repository.

Trail of Bits 54 Offchain Nitro Security Assessment
PUBLIC

2. Confusing retryable ticket–redemption mechanism

Severity: Low Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-NITRO-ARBOS-2

Target: ArbOS

Description
The retryable ticket–redemption mechanism has several downsides that are not explained
in the documentation. Users who are unaware of the risks may misuse the mechanism or
break the third-party integrations.

ArbOS allows externally owned accounts (EOAs) and smart contracts to manually redeem
existing retryable tickets by calling the ArbRetryable.redeem function. If the function is
called on an existing ticket that has not expired, the call will result in the emission of a
special event, which will signal ArbOS to execute the transaction in the current block.

func (con ArbRetryableTx) Redeem(c ctx, evm mech, ticketId bytes32) (bytes32, error)
{

retryableState := c.state.RetryableState()
byteCount, err := retryableState.RetryableSizeBytes(ticketId,

evm.Context.Time.Uint64())
if err != nil {

return hash{}, err
}
writeBytes := util.WordsForBytes(byteCount)
if err := c.Burn(params.SloadGas * writeBytes); err != nil {

return hash{}, err
}

retryable, err := retryableState.OpenRetryable(ticketId,
evm.Context.Time.Uint64())

if err != nil {
return hash{}, err

}
…
err = con.RedeemScheduled(c, evm, ticketId, retryTxHash, nonce, gasToDonate,

c.caller)
if err != nil {

return hash{}, err
}

…

Figure 2.1: Part of the implementation of redeem in the precompiled contracts

Trail of Bits 55 Offchain Nitro Security Assessment
PUBLIC

To know whether a retryable ticket’s redemption was successful, a user must manually
check the blockchain logs using a full node. . While this is confusing for EOAs, it is more
problematic for smart contracts, which may incorrectly expect that they can interact with
the state of the blockchain after a retryable ticket has been executed (assuming the
execution did not revert). Moreover, there can be multiple calls to the
ArbRetryable.redeem function, and thus multiple events, for a single retryable ticket,
though the redemption will be executed only once; a redemption can also be initiated and
canceled in the same transaction, in which case it will not be executed.

Exploit Scenario
Alice creates a smart contract that redeems retryable tickets to execute trades in L2. She
expects all of the trades to succeed, but some of them fail without her realizing it.

Recommendations
Short term, properly document the risks associated with the redemption of retryable
tickets. That way, users will understand that L2 contracts are unable to observe whether a
retryable ticket succeeds or fails.

Long term, review the use cases of each public component and API to ensure that they are
easy to understand and in line with users’ expectations.

Trail of Bits 56 Offchain Nitro Security Assessment
PUBLIC

3. Calls to selfdestruct(this) break the totalBalanceDelta bookkeeping

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-3

Target: go-ethereum, arbos/block_processor.go

Description
By executing selfdestruct(this), an attacker can break the total supply invariant and
force all nodes to print an error message.

The execution of selfdestruct(this) can affect the tracking of the total amount of ETH
that has been added to or removed from the chain (a functionality introduced in Offchain
Labs’s modifications of geth). ArbOS assumes that the delta will be equal to the amount
added or removed through L2 transactions:

case *types.ArbitrumDepositTx:
// L1->L2 deposits add eth to the system
expectedBalanceDelta.Add(expectedBalanceDelta, txInner.Value)

case *types.ArbitrumSubmitRetryableTx:
// Retryable submission can include a deposit which adds eth to the system
expectedBalanceDelta.Add(expectedBalanceDelta, txInner.DepositValue)

}

Figure 3.1: arbos/block_processor.go#L208-L214

} else if txLog.Address == ArbSysAddress && txLog.Topics[0] ==

L2ToL1TransactionEventID {

// L2->L1 withdrawals remove eth from the system

event := &precompilesgen.ArbSysL2ToL1Transaction{}

err := util.ParseL2ToL1TransactionLog(event, txLog)

if err != nil {

log.Error("Failed to parse L2ToL1Transaction log", "err", err)

} else {

expectedBalanceDelta.Sub(expectedBalanceDelta, event.Callvalue)

}

Figure 3.2: arbos/block_processor.go#L247-L255

Trail of Bits 57 Offchain Nitro Security Assessment
PUBLIC

If the delta values computed by geth and ArbOS diverge such that the chain holds more
ether than expected, the node will panic. If it holds less ether than expected, the node will
print an error message.

if balanceDelta.Cmp(expectedBalanceDelta) != 0 {

// Panic if funds have been minted or debug mode is enabled (i.e. this is a

test)

if balanceDelta.Cmp(expectedBalanceDelta) > 0 || chainConfig.DebugMode() {

panic(fmt.Sprintf("Unexpected total balance delta %v (expected %v)",

balanceDelta, expectedBalanceDelta))

} else {

// This is a real chain and funds were burnt, not minted, so only log

an error and don't panic

log.Error("Unexpected total balance delta", "delta", balanceDelta,

"expected", expectedBalanceDelta)

}

Figure 3.3: arbos/block_processor.go#L288-L295

By executing selfdestruct(this), an attacker could cause the balance of an account to
be burned, in which case there would be less ether than expected.

We set the severity of this finding to low because currently, the nodes would print an error
and continue the execution.

Exploit Scenario
Eve executes thousands of selfdestruct(this) calls at 2:00 a.m. on a well-known
holiday. This causes every Arbitrum node to print an error message. The Offchain Labs
team is alerted to the issue and has to react quickly to ensure that the error messages can
be discarded.

Recommendations
Short term, track the amount of ether burned through selfdestruct(this) and account
for that amount in delta computations. This will ensure that unexpected decreases in the
total amount of ether are reported; it will also prevent attackers from forcing the nodes to
spam the system with unexpected error messages. Be mindful of the issues detailed in
TOB-NITRO-GETH-3 and TOB-NITRO-ARBOS-7 when implementing this fix.

Long term, develop comprehensive centralized documentation on the system’s invariants
and thoroughly test those invariants.

Trail of Bits 58 Offchain Nitro Security Assessment
PUBLIC

4. Issues in the Go and Rust compilers’ WASM back ends

Severity: Undetermined Difficulty: High

Type: Undefined Behavior Finding ID: TOB-NITRO-ARBOS-4

Target: ArbOS, go-ethereum

Description
There are a number of issues and regressions in recent releases of the Go and Rust
compilers that affect their WASM back ends.

The ArbOS and geth codebases are cross-compiled to WASM so that the code can be
executed and validated during challenges. This compilation is performed by the official Go
and Rust compilers. However, the WASM back end of each compiler is less battle tested
than the rest of the compiler and contains a number of issues that can directly affect the
compiled code.

The issue tracker for the Go compiler lists the following WASM issues:

● Using await before go.run(inst) of wasm_exec await indefinitely (golang/go#49710)

● wasm: large memory usage with hard-coded map/array (golang/go#42979)

The issue tracker for the Rust compiler also lists several WASM issues:

● Emitted memset and memcpy are really slow on WASM (rust-lang/rust#92436)

● Broken WASM codegen with u128 and wasm_abi (rust-lang/rust#88207)

● WASM float to int performance regression since 1.53.0 (rust-lang/rust#87643)

● Compiling to WASM with emscripten, parse exception: attempted pop from empty
stack / beyond block start boundary (rust-lang/rust#91628)

Recommendations
Short term, review all known Go and Rust compiler issues to ensure that they do not affect
the correctness or performance of the compiled code.

Long term, monitor the development and adoption of the compilers’ WASM back ends to
assess their maturity.

Trail of Bits 59 Offchain Nitro Security Assessment
PUBLIC

https://github.com/golang/go/issues/49710
https://github.com/golang/go/issues/42979
https://github.com/rust-lang/rust/issues/92436
https://github.com/rust-lang/rust/issues/88207
https://github.com/rust-lang/rust/issues/87643
https://github.com/rust-lang/rust/issues/91628
https://github.com/rust-lang/rust/issues/91628

5. Risk of a node crash due to unchecked ticket-opening errors

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-5

Target: block_processor.go

Description
ArbOS does not check for errors when handling RedeemScheduledEventID events. This
means that an attacker could crash the ArbOS nodes by crafting a transaction that will
cause an error.

Once a transaction has been executed, ArbOS (via the ProduceBlock function) goes over
the transaction’s receipts and calls OpenRetryable to open any retryable tickets
associated with RedeemScheduledEventID events:

retryable, _ := state.RetryableState().OpenRetryable(event.TicketId, time)
redeem, _ := retryable.MakeTx(

chainConfig.ChainID,
event.SequenceNum,
gasPrice,
event.DonatedGas,
event.TicketId,
event.GasDonor,

)
redeems = append(redeems, types.NewTx(redeem))

Figure 5.1: block_processor.go#L236-L245

If OpenRetryable attempts to open a nonexistent ticket and experiences an error, it will
return a null pointer for retryable. Because ArbOS does not check the errors returned by
OpenRetryable, ArbOS will attempt to access the null pointer and will then crash.

There are multiple situations that could render an existing ticket nonexistent; these include
calls to redeem and cancel on the same ticket ID within the same transaction and calls to
redeem from within a ticket’s execution.

Exploit Scenario
Eve calls redeem and cancel on the same ticket ID in a single transaction. As a result,
OpenRetryable returns an error, causing ArbOS to crash.

Recommendations
Short term, take the following steps:

Trail of Bits 60 Offchain Nitro Security Assessment
PUBLIC

● Implement a check of the errors returned by OpenRetryable in ProduceBlock.
That way, an error in the redemption of a ticket will not cause ArbOS to access a null
pointer.

● Consider disallowing calls to redeem and cancel on the same ticket within the
same transaction, as well as calls to redeem from within a ticket’s execution. These
corner-case operations are error-prone and unlikely to be executed by anyone other
than malicious actors.

Long term, create a state-machine representation of the retryable ticket mechanism and
document its invariants and the expectations surrounding state changes. Implement
testing and fuzzing to ensure that these invariants hold.

Trail of Bits 61 Offchain Nitro Security Assessment
PUBLIC

6. Unspecified gas rules for precompiled Nitro contracts

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-NITRO-ARBOS-6

Target: precompiles/ArbSys.go

Description
Several precompiled Nitro contracts lack clear gas rules. As a result, users may be able to
execute costly operations without paying the full gas cost.

Standard precompiled contracts use RequiredGas to accurately compute gas costs:

func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64,
advancedInfo *AdvancedPrecompileCall) (ret []byte, remainingGas uint64, err error) {

advanced, isAdvanced := p.(AdvancedPrecompile)
if isAdvanced {

return advanced.RunAdvanced(input, suppliedGas, advancedInfo)
}

gasCost := p.RequiredGas(input)
if suppliedGas < gasCost {

return nil, 0, ErrOutOfGas
}
suppliedGas -= gasCost
output, err := p.Run(input)
return output, suppliedGas, err

}

Figure 6.1: core/vm/contracts.go#L166-L179

Several precompiled Nitro contracts (RunAdvanced) do not implement RequiredGas and
instead use ad hoc gas computations. Because there are no specified gas costs for the
execution of several precompiled Nitro contracts, users may be able to execute costly
operations without paying the full gas cost.

For example, the ArbSys.sendTxToL1 function executes Keccak256Hash on a
user-controlled dynamic array, calldataForL1, but does not impose a gas charge based
on the array’s length:

// Sends a transaction to L1, adding it to the outbox
func (con *ArbSys) SendTxToL1(c ctx, evm mech, value huge, destination addr,
calldataForL1 []byte) (huge, error) {

Trail of Bits 62 Offchain Nitro Security Assessment
PUBLIC

sendHash := crypto.Keccak256Hash(c.caller.Bytes(),
common.BigToHash(value).Bytes(), destination.Bytes(), calldataForL1)

Figure 6.2: The header of the SendTxToL1 function in ArbSys

Exploit Scenario
Eve executes thousands of SendTxToL1 calls, forcing the Arbitrum nodes to consume a
large amount of resources—and paying only a fraction of the required gas to execute the
calls.

Recommendations
Short term, evaluate and document the gas cost of executing each precompiled contract.
This will help prevent a denial-of-service scenario caused by resource exhaustion.

Long term, consider implementing a RequiredGas-like function in the precompiled Nitro
contracts to separate the calculation of gas costs from the execution logic. This will simplify
the gas-related code and the architecture.

Trail of Bits 63 Offchain Nitro Security Assessment
PUBLIC

7. Fragile expectedBalanceDelta bookkeeping

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-7

Target: block_processor.go

Description
The correctness of ArbOS’s expectedBalanceDelta bookkeeping relies heavily on an
assumption that certain corner cases and error paths are unreachable. This behavior is
error-prone, and there may also be other cases that could cause the
expectedBalanceDelta value to be computed incorrectly.

These corner cases include the execution of an ArbitrumDepositTx transaction not
generated by the arbAddress and the reversion of an ArbitrumDepositTx transaction.

Specifically, when handling an ArbitrumDepositTx transaction, ArbOS checks that the
transaction was generated by the arbAddress before adding the amount of the deposit to
the balance:

case *types.ArbitrumDepositTx:
if p.msg.From() != arbAddress {

return false, 0, errors.New("deposit not from arbAddress"), nil
}
p.evm.StateDB.AddBalance(*p.msg.To(), p.msg.Value())
return true, 0, nil, nil

Figure 7.1: tx_processor.go#L90-L95

However, it does not perform this check before incrementing the expectedBalanceDelta
value; instead, it adds the deposit amount to that value regardless of whether the
transaction was generated by the arbAddress:

switch txInner := tx.GetInner().(type) {
case *types.ArbitrumDepositTx:

// L1->L2 deposits add eth to the system
expectedBalanceDelta.Add(expectedBalanceDelta, txInner.Value)

Figure 7.2: block_processor.go#L207-L210

Similarly, ArbOS assumes that ArbitrumDepositTx transactions will never revert. (See
figure 7.1.) If an ArbitrumDepositTx transaction did revert, the expectedBalanceDelta
value would be incorrect.

Trail of Bits 64 Offchain Nitro Security Assessment
PUBLIC

We did not find any ways to execute these corner cases; however, the current way of
handling expectedBalanceDelta bookkeeping is inherently risky, and there may be other
corner cases that could also break the bookkeeping.

Recommendations
Short term, improve the process of updating the expectedBalanceDelta value upon an
ArbitrumDepositTx transaction; to do this, implement a check to ensure that the
transaction was generated by the arbAddress and did not revert. This will make the
bookkeeping functionality more robust against ArbOS errors.

Long term, develop comprehensive centralized documentation on the system’s invariants
and thoroughly test those invariants.

Trail of Bits 65 Offchain Nitro Security Assessment
PUBLIC

8. Processing of malformed retryable ticket messages can cause an ArbOS
crash

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-8

Target: arbos/incomingmessage.go

Description
An attacker could cause a node crash by submitting a retryable ticket message that forces
ArbOS to allocate a large amount of memory.

ArbOS receives on-chain data in the form of messages. There are a number of message
types, including one for retryable ticket messages.

func (msg *L1IncomingMessage) ParseL2Transactions(chainId *big.Int)

(types.Transactions, error) {

…

switch msg.Header.Kind {

case L1MessageType_L2Message:

…

case L1MessageType_EndOfBlock:

…

case L1MessageType_L2FundedByL1:

…

case L1MessageType_SubmitRetryable:

tx, err := parseSubmitRetryableMessage(bytes.NewReader(msg.L2msg),

msg.Header, chainId)

if err != nil {

return nil, err

}

return types.Transactions{tx}, nil

…

Figure 8.1: Part of the ParseL2Transactions function

Retryable ticket messages contain fields that are extracted directly from the raw data:

Trail of Bits 66 Offchain Nitro Security Assessment
PUBLIC

func parseSubmitRetryableMessage(rd io.Reader, header *L1IncomingMessageHeader,

chainId *big.Int) (*types.Transaction, error) {

destAddr, err := util.AddressFrom256FromReader(rd)

if err != nil {

return nil, err

}

pDestAddr := &destAddr

if destAddr == (common.Address{}) {

pDestAddr = nil

}

callvalue, err := util.HashFromReader(rd)

if err != nil {

return nil, err

}

depositValue, err := util.HashFromReader(rd)

if err != nil {

return nil, err

}

…

dataLengthBig := dataLength256.Big()

if !dataLengthBig.IsUint64() {

return nil, errors.New("data length field too large")

}

dataLength := dataLengthBig.Uint64()

data := make([]byte, dataLength)

…

Figure 8.2: Part of the ParseL2Transactions function

However, the dataLength field is not properly validated, and a large enough dataLength
value could cause a panic.

panic: runtime error: makeslice: len out of range

goroutine 17 [running, locked to thread]:

github.com/offchainlabs/arbstate/arbos.parseSubmitRetryableMessage({0xd763a0,

0xc0001ad710}, 0xc0001bb400, 0xc0001a3ac0)

arbos/incomingmessage.go:445 +0x830

Trail of Bits 67 Offchain Nitro Security Assessment
PUBLIC

github.com/offchainlabs/arbstate/arbos.(*L1IncomingMessage).ParseL2Transactions(0xc0

001a3aa0, 0xc0001a3ac0)

arbos/incomingmessage.go:200 +0x857

github.com/offchainlabs/arbstate/cmd/fuzz.Fuzz({0x377fdf0, 0x22b, 0x22b})

cmd/fuzz/fuzz.go:17 +0x152

main.LLVMFuzzerTestOneInput(0x0, 0xc000000601)

cmd/fuzz/go.fuzz.main/main.go:35 +0x47

==15936== ERROR: libFuzzer: deadly signal

#0 0x4adfc0 in __sanitizer_print_stack_trace (cmd/fuzz/fuzz.libfuzzer+0x4adfc0)

#1 0x45a2c8 in fuzzer::PrintStackTrace() (cmd/fuzz/fuzz.libfuzzer+0x45a2c8)

#2 0x43f413 in fuzzer::Fuzzer::CrashCallback()

(cmd/fuzz/fuzz.libfuzzer+0x43f413)

#3 0x7fa1e20ed97f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1297f)

#4 0x515680 in runtime.raise.abi0 runtime/sys_linux_amd64.s:164

Figure 8.3: ArbOS panics when trying to parse a malformed message

We set the severity of this finding to informational because the smart contract currently
validates the message fields.

Recommendations
Short term, implement proper validation of the dataLength field to prevent panics.

Long term, execute extensive fuzz testing to catch panics and unhandled exceptions in the
Go code.

Trail of Bits 68 Offchain Nitro Security Assessment
PUBLIC

9. Invalid transactions count toward the block gas limit

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-9

Target: arbos/block_processor.go

Description
Although an invalid transaction will not be included in a block, it will still decrease the
amount of gas available in the block being processed.

The ProduceBlockAdvanced function uses gasLeft to track the gas limit per block on L2:

gasLeft, _ := state.L2PricingState().PerBlockGasLimit()

Figure 9.1: arbos/block_processor.go#L146

The amount of gas that will remain in a block upon a transaction’s completion (gasLeft) is
computed before the execution of the transaction:

computeGas := tx.Gas() - dataGas

if computeGas > gasLeft && isUserTx && userTxsCompleted > 0 {
return nil, nil, core.ErrGasLimitReached

}

[..]

gasLeft -= computeGas

receipt, result, err := core.ApplyTransaction(
chainConfig,
chainContext,
&header.Coinbase,
&gasPool,
statedb,
header,
tx,
&header.GasUsed,
vm.Config{},

)
if err != nil {

// Ignore this transaction if it's invalid under the state transition function

Trail of Bits 69 Offchain Nitro Security Assessment
PUBLIC

statedb.RevertToSnapshot(snap)
return nil, nil, err

}

Figure 9.2: arbos/block_processor.go#L235-L261

If the transaction is invalid, it will not be included in the block. However, the gas cost of the
transaction will still count toward the block gas limit, causing the block to be filled more
quickly than it should be.

Exploit Scenario
Eve submits thousands of invalid transactions. By submitting these transactions, Eve slows
the generation of Arbitrum blocks—and pays only the L1 costs to do so.

Recommendations
Short term, decrease the gasLeft value only after a transaction has been executed in
ProduceBlockAdvanced. That way, transactions will not decrease the amount of gas
available in a block unless they are included in the block.

Long term, document the L2 gas rules and the modifications made to the geth gas metrics,
and ensure that the test suite covers any related corner cases.

Trail of Bits 70 Offchain Nitro Security Assessment
PUBLIC

10. Confusing rule for calculating the amount of gas remaining in a block

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-10

Target: block_processor.go

Description
ArbOS does not include the poster’s gas cost when calculating the amount of gas left in a
block. This nonstandard gas rule has no direct effect on the calculation’s outcome, as
ArbOS also implements the original geth rule.

ArbOS implements a custom rule for calculating the amount of gas left in a block: instead of
including tx.Gas() in its calculation, it includes tx.Gas() subtracted from the poster’s
gas cost.

if gasPrice.Sign() > 0 {
dataGas = math.MaxUint64
pricing := state.L1PricingState()
posterCost, _ := pricing.PosterDataCost(sender, aggregator, tx.Data())
posterCostInL2Gas := new(big.Int).Div(posterCost, gasPrice)
if posterCostInL2Gas.IsUint64() {

dataGas = posterCostInL2Gas.Uint64()
} else {

log.Error("Could not get poster cost in L2 terms", posterCost, gasPrice)
}

}

if dataGas > tx.Gas() {
// this txn is going to be rejected later
if hooks.RequireDataGas {

return nil, nil, core.ErrIntrinsicGas
}
dataGas = 0

}

computeGas := tx.Gas() - dataGas

if computeGas > gasLeft && isUserTx && userTxsCompleted > 0 {
return nil, nil, core.ErrGasLimitReached

}

Figure 10.1: block_processor.go#L215-L219

Trail of Bits 71 Offchain Nitro Security Assessment
PUBLIC

However, ArbOS also executes geth’s preCheck function:

func (st *StateTransition) transitionDbImpl() (*ExecutionResult, error) {
[...]

// Check clauses 1-3, buy gas if everything is correct
if err := st.preCheck(); err != nil {

return nil, err
}

Figure 10.2: core/state_transition.go#L286-L305

This function executes buyGas:

func (st *StateTransition) preCheck() error {
[...]
return st.buyGas()

Figure 10.3: core/state_transition.go#L225-L270

The buyGas function subtracts the gas cost of a transaction from the amount of gas left in
the block and returns an error if the block is left without any gas:

func (st *StateTransition) buyGas() error {
[...]
if err := st.gp.SubGas(st.msg.Gas()); err != nil {

return err
}

Figure 10.4: core/state_transition.go#L203-L217

Thus, while ArbOS does not include the poster’s gas cost in the operation, the omission has
no effect on the outcome.

Recommendations
Short term, clarify how the poster’s gas cost should be handled in regard to the block gas
limit and create a standard rule for it.

Long term, document the L2 gas rules and the modifications made to the geth gas metrics,
and ensure that the test suite covers any related corner cases.

Trail of Bits 72 Offchain Nitro Security Assessment
PUBLIC

11. Use of an uno�cial Brotli library for message compression

Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-11

Target: incomingmessage.go, andybalholm/brotli

Description
The parsing of compressed incoming messages for ArbOS uses a Brotli library that is not
the official one and it lacks thorough testing.

Certain ArbOS messages could be compressed using Brotli:

func parseL2Message(rd io.Reader, poster common.Address, requestId common.Hash,
depth int) (types.Transactions, error) {
…
case L2MessageKind_BrotliCompressed:

if depth > 0 { // ignore compressed messages if not top level
return nil, errors.New("can only compress top level batch")

}
reader := io.LimitReader(brotli.NewReader(rd), MaxL2MessageSize)
return parseL2Message(reader, poster, requestId, depth+1)

…

Figure 11.1: incomingmessage.go#L294-L299

ArbOS uses an unofficial library instead of the Google recommended one, which has been
extensively tested through Google's oss-fuzz tool. By contrast, the unofficial library was
converted semi-automatically from C code via the c2go tool and has not been extensively
tested.

Moreover, when we ran a fuzzing campaign on the Brotli library, our fuzzer was unable to
reach several parts of the codebase. It is unclear whether these parts of the codebase are
unreachable or whether they could be reached with additional exploration.

func copyUncompressedBlockToOutput(available_out *uint, next_out *[]byte, total_out
*uint, s *Reader) int {

/* TODO: avoid allocation for single uncompressed block. */
if !ensureRingBuffer(s) {

return decoderErrorAllocRingBuffer1
}

…

Figure 11.2: The code not covered in our fuzzing of brotli/decode.go

Trail of Bits 73 Offchain Nitro Security Assessment
PUBLIC

https://github.com/andybalholm/brotli
https://github.com/google/brotli/tree/master/go
https://github.com/andybalholm/c2go

Exploit Scenario
Alice, the maintainer of the unofficial Brotli library used by ArbOS, decides to disown the
project. Eve takes over its maintenance and creates a new release. She claims that the
release contains a critical fix but has actually added a backdoor to the code. When the
Arbitrum team sees the new release, it updates the ArbOS code to use the new version of
the library.

Recommendations
Short term, consider using Google’s official library for Brotli compression or avoiding the
use of Brotli compression altogether to reduce ArbOS’s attack surface.

Long term, review all external dependencies to ensure that they are well maintained and
tested.

Trail of Bits 74 Offchain Nitro Security Assessment
PUBLIC

https://github.com/google/brotli/tree/master/go

12. Escrow addresses can be used to move stolen funds

Severity: Low Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-NITRO-ARBOS-12

Target: retryable.go

Description
ArbOS’s handling of escrowed funds could enable an attacker to obfuscate a movement of
stolen ETH.

ArbOS defines special addresses to hold retryable ticket funds in escrow:

func RetryableEscrowAddress(ticketId common.Hash) common.Address {

return common.BytesToAddress(crypto.Keccak256([]byte("retryable escrow"),

ticketId.Bytes()))

}

Figure 12.1: retryable/retryable.go#L324-L326

When a retryable ticket is executed or canceled, the balance of the escrow address
associated with the ticket is transferred to the beneficiary’s address:

func OpenRetryableState(sto *storage.Storage, statedb vm.StateDB) *RetryableState {

payFromEscrow := func(ticketId common.Hash, destination common.Address) {

escrowAddress := RetryableEscrowAddress(ticketId)

arbos_util.TransferEverything(escrowAddress, destination, statedb)

}

…

}

func (rs *RetryableState) DeleteRetryable(id common.Hash) (bool, error) {

retStorage := rs.retryables.OpenSubStorage(id.Bytes())

timeout, err := retStorage.GetByUint64(timeoutOffset)

if timeout == (common.Hash{}) || err != nil {

return false, err

}

Trail of Bits 75 Offchain Nitro Security Assessment
PUBLIC

// move any funds in escrow to the beneficiary (should be none if the retry

succeeded -- see EndTxHook)

beneficiary, _ := retStorage.GetByUint64(beneficiaryOffset)

rs.payFromEscrow(id, common.BytesToAddress(beneficiary[:]))

…

}

Figure 12.2: The OpenRetryableState and DeleteRetryable functions in
retryable/retryable.go

Although full nodes can replay every ArbOS operation, it is difficult for them to identify
whether an ETH balance movement corresponds to a ticket refund. This is because the
balance movement will not be directly translated into an EVM transaction (and thus
reflected in an off-chain event) and will instead be triggered when the retryable ticket is
deleted. This can be very useful to attackers seeking to move stolen funds without leaving
an obvious trace.

Exploit Scenario
Eve hacks a contract and obtains a large amount of ETH in the Arbitrum system. Eve then
creates a retryable ticket and transfers the stolen funds to a corresponding escrow
address. Eventually, Eve's retryable ticket expires and is ready to be refunded. Alice, a user
interacting with the retryable ticket system, triggers the deletion of Eve's expired ticket. The
stolen funds then disappear from the escrow address and appear in Eve's wallet.

Recommendations
Short term, consider emitting an event for retryable ticket refunds, including refunds
executed in the context of other operations (such as transactions from one of ArbOS’s
special addresses).

Long term, closely monitor the ways in which users interact with the special ArbOS
addresses (e.g., escrow and gas network wallet addresses) to ensure that they are not
being used in unintended ways.

Trail of Bits 76 Offchain Nitro Security Assessment
PUBLIC

13. Confusing EOA address remapping rules

Severity: Medium Difficulty: Medium

Type: Access Controls Finding ID: TOB-NITRO-ARBOS-13

Target: ArbOS

Description
The confusing nature of the EOA remapping rules could cause users to interact with an L2
contract incorrectly.

To prevent the use of a smart contract to send an L2 transaction (i.e., the issue detailed in
finding TOB-ARB-BRIDGE-013 of the September 10, 2021 Arbitrum security assessment),
ArbOS now remaps the from address of any transaction originating from an L1 contract.
The Arbitrum team also implemented the following rules for the remapping of EOA
addresses:

● If the transaction sent by an EOA is signed, the EOA’s address is not remapped.

● If the transaction is a retryable ticket generated through a call to depositEth, the
address is not remapped.

● In all other situations, the address is remapped.

The divergence from the remapping rule for L1 contracts is not well documented and could
result in user confusion and the use of an incorrect from address in an L2 transaction.

Exploit Scenario
Bob submits a signed transaction to take out a collateralized loan on L2. The value of the
collateral then decreases, so Bob needs to deposit additional funds to prevent the
liquidation of his loan. To speed up the process, Bob calls the createRetryableTicket
function directly rather than using the sequencer to transfer the funds. Instead of
increasing Bob’s collateral, the call causes Bob’s address to be remapped and a new
position to be created. The value of Bob’s collateral continues to decrease, and Bob’s loan is
liquidated.

Recommendations
Short term, implement a single remapping rule for EOA addresses or clearly document the
EOA remapping rules. Currently, the rules are error-prone and undocumented.

Trail of Bits 77 Offchain Nitro Security Assessment
PUBLIC

Long term, review all corner cases that could occur in the handling of cross-chain
transactions and ensure that users are aware of them.

Trail of Bits 78 Offchain Nitro Security Assessment
PUBLIC

14. Unreachable mechanism for disabling the default aggregator

Severity: Informational Difficulty: High

Type: Access Controls Finding ID: TOB-NITRO-ARBOS-14

Target: arbos/block_processor.go

Description
ArbOS users are not required to use the default aggregator. However, the code involved in
disabling the default aggregator is not reachable and is therefore dead code.

When checking whether it needs to reimburse an aggregator for a transaction, ArbOS
checks whether the transaction’s sender has disabled the default aggregator:

// Get the aggregator who is eligible to be reimbursed for L1 costs of txs from

sender, or nil if there is none.

func (ps *L1PricingState) ReimbursableAggregatorForSender(sender common.Address)

(*common.Address, error) {

fromTable, err := ps.UserSpecifiedAggregator(sender)

if err != nil {

return nil, err

}

if fromTable != nil {

return fromTable, nil

}

refuses, err := ps.RefusesDefaultAggregator(sender)

if err != nil || refuses {

return nil, err

}

Figure 14.1: arbos/l1pricing/l1pricing.go#L133-L146

Disabling the default aggregator requires a call to the SetRefusesDefaultAggregator
function:

Trail of Bits 79 Offchain Nitro Security Assessment
PUBLIC

func (ps *L1PricingState) SetRefusesDefaultAggregator(addr common.Address, refuses

bool) error {

val := uint64(0)

if refuses {

val = 1

}

return ps.refuseDefaultAggregator.Set(common.BytesToHash(addr.Bytes()),

common.BigToHash(new(big.Int).SetUint64(val)))

}

Figure 14.1: arbos/l1pricing/l1pricing.go#L133-L146

However, this function is never called. Thus, the relevant code is dead code, and the
mechanism for disabling the default aggregator is not implemented.

Recommendations
Short term, either remove the unreachable code related to the disabling of the default
aggregator, or implement the SetRefusesDefaultAggregator function in a precompiled
contract. Because this function is currently unreachable, it is unclear whether code is
missing from the codebase or whether the disabling option was meant to be removed.

Long term, improve the documentation on the use of aggregators. Specifically, explain the
extent of their control over users’ funds and actions and ensure that users are aware of the
inherent risks of using an aggregator.

Trail of Bits 80 Offchain Nitro Security Assessment
PUBLIC

15. Risk of a node crash due to unchecked PosterDataCost errors

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-15

Target: block_processor.go, tx_processor.go

Description
ArbOS invokes the PosterDataCost function to compute the cost of each transaction.
However, it does not check the errors returned by this function. This omission could enable
an attacker to crash the ArbOS nodes by deliberately causing an error.

The PosterDataCost function uses the addresses of a transaction’s sender and
aggregator and the data of the actual transaction to compute the transaction’s cost.

if gasPrice.Sign() > 0 {
dataGas = math.MaxUint64
pricing := state.L1PricingState()
posterCost, _ := pricing.PosterDataCost(sender, aggregator, tx.Data())
posterCostInL2Gas := new(big.Int).Div(posterCost, gasPrice)

Figure 15.1: block_processor.go#L215-L219

However, various situations could cause PosterDataCost to experience an error and
return a null pointer. These include the disabling of the default aggregator
(TOB-NITRO-ARBOS-14).

func (ps *L1PricingState) PosterDataCost(
sender common.Address,
aggregator *common.Address,
data []byte,

) (*big.Int, error) {
…
reimbursableAggregator, err := ps.ReimbursableAggregatorForSender(sender)
if err != nil {

return nil, err
}
…

bytesToCharge := uint64(len(data) + TxFixedCost)

ratio, err := ps.AggregatorCompressionRatio(*reimbursableAggregator)
if err != nil {

return nil, err
}

Trail of Bits 81 Offchain Nitro Security Assessment
PUBLIC

dataGas := 16 * bytesToCharge * ratio / DataWasNotCompressed

// add 5% to protect the aggregator from bad price fluctuation luck
dataGas = dataGas * 21 / 20

price, err := ps.L1GasPriceEstimateWei()
if err != nil {

return nil, err
}

baseCharge, err := ps.FixedChargeForAggregatorWei(*reimbursableAggregator)
if err != nil {

return nil, err
}

…
}

Figure 15.2: Potential error conditions in PosterDataCost

Because ArbOS does not check the errors returned by PosterDataCost, it may attempt to
access a null pointer, in which case ArbOS will crash.

Similarly, if PosterDataCost experiences an error, the
tx_processor.GasChargingHook function will log the error but may still return a null
pointer for posterCost.

Exploit Scenario
Alice posts a transaction that causes PosterDataCost to return an error. ArbOS discards
the error and accesses a null pointer, which causes it to crash.

Recommendations
Short term, have each one of PosterDataCost’s callers check for errors returned by the
function. This will prevent an error in a gas cost computation from causing ArbOS to access
a null pointer.

Long term, review all of the functions that can return errors and ensure that their callers
properly handle those errors instead of dereferencing a null pointer.

Trail of Bits 82 Offchain Nitro Security Assessment
PUBLIC

16. Infinite loop caused by parsing of malformed sequencer messages

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-16

Target: inbox.go

Description
The lack of data validation in the parsing of messages from the sequencer can cause ArbOS
to enter a loop, preventing the production of new blocks.

ArbOS parses the messages it receives from the sequencer without checking whether they
are malformed:

// This does *not* return parse errors, those are transformed into invalid messages
func (r *inboxMultiplexer) Pop() (*MessageWithMetadata, error) {

if r.cachedSequencerMessage == nil {
bytes, realErr := r.backend.PeekSequencerInbox()
if realErr != nil {

return nil, realErr
}
r.cachedSequencerMessageNum = r.backend.GetSequencerInboxPosition()
r.cachedSequencerMessage = parseSequencerMessage(bytes)

}
msg, err := r.getNextMsg()
// advance even if there was an error

Figure 16.1: inbox.go#L148-L159

If getNextMsg fails to decode an unsigned integer encoded as a Recursive Length Prefix
(RLP) string, it will not increase the segment number, which is necessary for the parsing to
continue.

// Returns a message, the segment number that had this message, and real/backend
errors
// parsing errors will be reported to log, return nil msg and nil error
func (r *inboxMultiplexer) getNextMsg() (*MessageWithMetadata, error) {

…
for {

if segmentNum >= uint64(len(seqMsg.segments)) {
break

}
segment = seqMsg.segments[int(segmentNum)]
if len(segment) == 0 {

Trail of Bits 83 Offchain Nitro Security Assessment
PUBLIC

segmentNum++
continue

}
segmentKind := segment[0]
if segmentKind == BatchSegmentKindAdvanceTimestamp || segmentKind ==

BatchSegmentKindAdvanceL1BlockNumber {
rd := bytes.NewReader(segment[1:])
advancing, err := rlp.NewStream(rd, 16).Uint()
if err != nil {

log.Warn("error parsing sequencer advancing segment",
"err", err)

continue
}

Figure 16.2: Part of the getNextMsg function

Thus, if the sequencer sends a malformed message, ArbOS will become stuck in a loop, and
no new blocks will be produced.

Exploit Scenario
The sequencer posts a malformed message, which causes ArbOS to enter an infinite loop
and ultimately crashes the validators.

Recommendations
Short term, ensure that segmentNum is incremented even if the message being parsed is
invalid.

Long term, use a fuzzer to ensure that an invalid or incomplete message will not disrupt
ArbOS’s expected behavior.

Trail of Bits 84 Offchain Nitro Security Assessment
PUBLIC

17. ArbOS bottleneck caused by RLP decoding loop

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-17

Target: inbox.go

Description
By posting a large enough message, the sequencer could force ArbOS to complete
numerous iterations of the message-decoding loop, degrading the quality of its service.

ArbOS parses the messages it receives from the sequencer without checking whether they
are malformed:

// This does *not* return parse errors, those are transformed into invalid messages
func (r *inboxMultiplexer) Pop() (*MessageWithMetadata, error) {

if r.cachedSequencerMessage == nil {
bytes, realErr := r.backend.PeekSequencerInbox()
if realErr != nil {

return nil, realErr
}
r.cachedSequencerMessageNum = r.backend.GetSequencerInboxPosition()
r.cachedSequencerMessage = parseSequencerMessage(bytes)

}
msg, err := r.getNextMsg()
// advance even if there was an error

Figure 17.1: inbox.go#L148-L159

The parseSequencerMessage function decompresses the messages and, using a for
loop, decodes them into a list of RLP bytes:

func parseSequencerMessage(data []byte) *sequencerMessage {
…
if len(data) >= 41 {

if data[40] == 0 {
reader :=

io.LimitReader(brotli.NewReader(bytes.NewReader(data[41:])), maxDecompressedLen)
stream := rlp.NewStream(reader, uint64(maxDecompressedLen))
for {

var segment []byte
err := stream.Decode(&segment)
if err != nil {

if !errors.Is(err, io.EOF) && !errors.Is(err,

Trail of Bits 85 Offchain Nitro Security Assessment
PUBLIC

io.ErrUnexpectedEOF) {
log.Warn("error parsing sequencer message

segment", "err", err.Error())
}
break

}
segments = append(segments, segment)

}

Figure 17.2: Part of the getNextMsg function

However, this loop can contain numerous items, and the sequencer could add empty RLP
segments (each consisting of only one byte) to increase that number and cause a
slowdown. There is a limit on the size of the decompressed data (16 MB, or 1024 * 1024 *
16 bytes), and it could be very expensive to post an on-chain message that would cause the
function to reach that limit. However, the use of Brotli compression could enable the
sequencer to produce very small files (of around 15 bytes), making the attack very cheap.

Exploit Scenario
The sequencer posts a compressed message with numerous empty segments, causing
ArbOS to experience a severe slowdown and degrading the quality of its service.

Recommendations
Short term, consider limiting the number of segments that the sequencer can send.

Long term, use a fuzzer to ensure that an invalid or incomplete message will not disrupt
ArbOS’s expected behavior.

Trail of Bits 86 Offchain Nitro Security Assessment
PUBLIC

https://eth.wiki/fundamentals/rlp

18. Broken gasLeft computation

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-18

Target: arbos/block_processor.go

Description
When calculating a transaction’s effect on the gasLeft value, ProduceBlockAdvanced
twice subtracts the amount of gas used from that value. As a result, blocks are filled more
quickly than expected.

The ProduceBlockAdvanced function uses gasLeft to track the gas limit per block on L2:

gasLeft, _ := state.L2PricingState().PerBlockGasLimit()

Figure 18.1: arbos/block_processor.go#L146

The gasLeft value is calculated twice with each transaction: the first calculation uses the
total cost incurred to complete the transaction, and the second, the amount of gas used by
the transaction.

computeGas := tx.Gas() - dataGas

if computeGas > gasLeft && isUserTx && userTxsCompleted > 0 {
return nil, nil, core.ErrGasLimitReached

}

[..]

gasLeft -= computeGas

[..]

gasLeft -= gasUsed - dataGas

Figure 18.2: arbos/block_processor.go#L235-L320

While twice counting the amount of gas used by a transaction would be problematic, the
use of the entire transaction gas cost in the first operation causes L2 blocks to be filled
even more quickly.

Trail of Bits 87 Offchain Nitro Security Assessment
PUBLIC

Exploit Scenario
The amount of gas left in an L2 block decreases twice with every transaction that is
executed. As a result, the Arbitrum system becomes congested, and users have to pay
higher-than-expected fees.

Recommendations
Short term, have ProduceBlockAdvanced decrease the gasLeft value only once per
transaction. This will prevent L2 blocks from being filled twice as fast as they should be.

Long term, document the L2 gas rules and the modifications made to the geth gas metrics
and ensure that the test suite covers any related corner cases.

Trail of Bits 88 Offchain Nitro Security Assessment
PUBLIC

19. Aggregators can block user transactions by setting a high fixed fee

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-19

Target: arbos/block_processor.go

Description
The L1 fees paid to an aggregator include a fixed fee that can be set by the aggregator.
Because there is no limit on this fixed fee, a malicious aggregator could set a high fee to
prevent transactions from being included in a block.

The aggregator’s fixed fee is added to the dynamic fee, which is based on the transaction
input’s length:

baseCharge, err := ps.FixedChargeForAggregatorWei(*reimbursableAggregator)

if err != nil {

return nil, err

}

chargeForBytes := new(big.Int).Mul(big.NewInt(int64(dataGas)), price)

return new(big.Int).Add(baseCharge, chargeForBytes), nil

Figure 19.1: arbos/l1pricing/l1pricing.go#L252-L258

The fixed fee can be set to an arbitrary value by the aggregator (or the system’s owner):

// Sets an aggregator's fixed fee (caller must be the aggregator, its fee collector,

or an owner)

func (con ArbAggregator) SetTxBaseFee(c ctx, evm mech, aggregator addr, feeInL1Gas

huge) error {

allowed, err := accountIsAggregatorOrCollectorOrOwner(c.caller, aggregator,

c.state)

if err != nil {

return err

}

if !allowed {

Trail of Bits 89 Offchain Nitro Security Assessment
PUBLIC

return errors.New("Only an aggregator (or its fee collector / chain

owner) may change its fee collector")

}

return c.state.L1PricingState().SetFixedChargeForAggregatorL1Gas(aggregator,

feeInL1Gas)

}

Figure 19.2: precompiles/ArbAggregator.go#L108-L118

Although there is no limit on this fee, the total L1 cost of a transaction (the sum of the fixed
and dynamic fees) is capped at 2**64:

posterCostInL2Gas := new(big.Int).Div(posterCost, gasPrice) // the cost as if it

were an amount of gas

if !posterCostInL2Gas.IsUint64() {

posterCostInL2Gas = new(big.Int).SetUint64(math.MaxUint64)

}

Figure 19.3: arbos/tx_processor.go#L247-L250

An aggregator could thus prevent users from sending L2 transactions by setting a high
fixed fee. To switch to another aggregator, users would need to pay a transaction cost of
~2**64 wei (~USD 40,000–50,000 at the current ether price).

Exploit Scenario
Over time, the owner drops its capacity to control the fixed fee of an aggregator. Eve
changes the fixed fee of her aggregator to 2**128. As a result, to continue using the
Arbitrum system, the aggregator’s users are forced to pay the high fee or to pay USD
50,000 to change their aggregator.

Recommendations
Short term, implement a cap on fixed aggregator fees. This will prevent malicious
aggregators from setting high fees.

Long term, document the L2 gas rules, the modifications made to the geth gas metrics, and
the risks associated with using an aggregator. Additionally, ensure that the test suite covers
any related corner cases.

Trail of Bits 90 Offchain Nitro Security Assessment
PUBLIC

20. Aggregators can steal each other’s tips

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-20

Target: arbos/block_processor.go

Description
As of EIP-1559, every transaction can include a tip. However, because all Arbitrum tips are
sent to block.coinbase, one aggregator could steal another’s tip by front-running the
transaction and including it in a block.

effectiveTip := st.gasPrice

if london {

effectiveTip = cmath.BigMin(st.gasTipCap,

new(big.Int).Sub(st.gasFeeCap, st.evm.Context.BaseFee))

}

st.state.AddBalance(st.evm.Context.Coinbase,

new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), effectiveTip))

Figure 20.1: go-ethereum/core/state_transition.go#L356-L360

The Arbitrum documentation includes the following guidance on tips:

While tips are not advised for those using the sequencer, which prioritizes

transactions on a first-come first-served basis, 3rd-party aggregators may choose to

order txes based on tips. A user specifies a tip by setting a gas price in excess of

the basefee and will pay that difference on the amount of gas the tx uses.

A poster receives the tip only when the user has set them as their preferred

aggregator. Otherwise the tip goes to the network fee collector. This disincentives

unpreferred aggregators from racing to post txes with large tips.

Figure 20.2: docs/arbos/Gas.md#tips-in-l2

The claims in the second paragraph are incorrect: in Arbitrum, every tip is sent to the
coinbase, even if the associated transaction was included by an aggregator other than the

Trail of Bits 91 Offchain Nitro Security Assessment
PUBLIC

preferred aggregator. This incentivizes aggregators to race to post transactions with large
tips.

Exploit Scenario
Alice’s aggregator. She posts a transaction with a 0.1 ETH tip. Eve front-runs Alice’s
transaction and includes it in its own block, stealing Alice’s tip.

Recommendations
Short term, investigate ways to prevent the theft of tips. A simple solution would be
updating the geth code to send a tip to the user’s preferred aggregator or to the coinbase
in the absence of a preferred aggregator. However, that would require implementing a
change in geth that could be difficult to push upstream.

Long term, document the L2 gas rules, the modifications made to the geth gas metrics, and
the risks associated with using an aggregator. Additionally, ensure that the test suite covers
any related corner cases.

Trail of Bits 92 Offchain Nitro Security Assessment
PUBLIC

21. Aggregators can steal extra fees by updating their rates

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-21

Target: arbos/block_processor.go

Description
An aggregator can update its compression ratio or fixed charge at any time. By executing a
well-timed update, an aggregator could trick a user into paying a higher-than-expected
poster cost.

Every transaction can carry a poster cost, which is based on the aggregator’s compression
ratio and fixed charge:

baseCharge, err := ps.FixedChargeForAggregatorWei(*reimbursableAggregator)

if err != nil {

return nil, err

}

chargeForBytes := new(big.Int).Mul(big.NewInt(int64(dataGas)), price)

return new(big.Int).Add(baseCharge, chargeForBytes), nil

Figure 21.1: arbos/l1pricing/l1pricing.go#L252-L258

An aggregator can change its ratio at any time by calling
ArbAggregator.SetCompressionRatio or ArbAggregator.SetTxBaseFee. A
well-timed change could allow an aggregator to steal user funds (any amount of funds up
to the transaction’s gas limit).

Exploit Scenario
Alice, who holds 1 ETH, is using Eve’s aggregator. She sends a transaction with no gas limit.
Eve’s aggregator receives Alice’s transaction and creates a block with a previous
transaction. Eve then updates the aggregator’s fixed cost to 1 ETH, which enables her to
steal Alice’s ether.

Recommendations
Short term, document the risks associated with malicious aggregators and ensure that
users set appropriate gas limits.

Trail of Bits 93 Offchain Nitro Security Assessment
PUBLIC

Long term, document the L2 gas rules, the modifications made to the geth gas metrics, and
the risks associated with using an aggregator. Additionally, ensure that the test suite covers
any related corner cases.

Trail of Bits 94 Offchain Nitro Security Assessment
PUBLIC

22. Aggregators can censor the redemption of retryable tickets

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-22

Target: arbos/block_processor.go

Description
The sequencer or an aggregator could cause the redemption of a retryable ticket to be
rejected by including the transaction’s execution at the end of a block.

The redemption of a retryable ticket triggers the creation of a new transaction, which will
be executed after the redemption call:

if len(redeems) > 0 {
tx = redeems[0]
redeems = redeems[1:]

retry, ok := (tx.GetInner()).(*types.ArbitrumRetryTx)
if !ok {

panic("retryable tx is somehow not a retryable")
}
retryable, _ :=

state.RetryableState().OpenRetryable(retry.TicketId, time)
if retryable == nil {

// retryable was already deleted
continue

}

Figure 22.1: arbos/block_processor.go#L174-L186

If the current block has reached its gas limit, the transaction will be discarded:

if computeGas > gasLeft && isUserTx && userTxsCompleted > 0 {
return nil, nil, core.ErrGasLimitReached

}

Figure 22.2: arbos/block_processor.go#L237-L239

The sequencer or an aggregator could thus force a transaction to be discarded by putting it
at the end of a block.

Exploit Scenario
Eve is a malicious actor who runs an aggregator. Eve wants to prevent the execution of
tickets created by Alice, who sends her transactions to Bob’s aggregator. Whenever Alice

Trail of Bits 95 Offchain Nitro Security Assessment
PUBLIC

sends a transaction, Eve front-runs all of the transactions submitted by Bob’s aggregator
and includes Alice’s transaction at the end of her block. As a result, Alice’s attempts to
redeem her tickets always fail.

Recommendations
Short term, document this issue and ensure that users are aware that they can call the
bridge directly if an aggregator or the sequencer is censoring their retryable tickets.

Long term, develop centralized documentation highlighting the risks associated with using
the sequencer or an aggregator.

Trail of Bits 96 Offchain Nitro Security Assessment
PUBLIC

23. Fragile retryable ticket ID scheme

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBOS-23

Target: arbos/block_processor.go

Description
The retryable ticket ID scheme would allow for a RequestId collision if it were possible for
more than one retryable ticket to be submitted in the same block.

The RequestId field of a retryable ticket, which indicates the ticket’s unique identifier, is
set to the block header’s RequestId:

tx := &types.ArbitrumSubmitRetryableTx{

ChainId: chainId,

RequestId: header.RequestId,

Figure 23.1: arbos/incomingmessage.go#L454-L456

The block header’s RequestId is based on segmentNum and
cachedSequencerMessageNum:

var requestId common.Hash

// TODO: a consistent request id. Right now we just don't set the

request id when it isn't needed.

if len(segment) < 2 || (segment[1] != arbos.L2MessageKind_SignedTx &&

segment[1] != arbos.L2MessageKind_UnsignedUserTx) {

requestId[0] = 1 << 6

binary.BigEndian.PutUint64(requestId[(32-16):(32-8)],

r.cachedSequencerMessageNum)

binary.BigEndian.PutUint64(requestId[(32-8):], segmentNum)

}

Figure 23.2: arbos/incomingmessage.go#L454-L456

This means that if two tickets were created within the same block, they would have the
same RequestId.

Trail of Bits 97 Offchain Nitro Security Assessment
PUBLIC

It is not currently possible for two tickets to be created in the same block. However, if an
update to the protocol enabled that option, every ticket in the same block would have the
same RequestId.

Recommendations
Short term, update the retryable ticket ID scheme such that every ticket has a unique ID.
That way, if it becomes possible to create multiple tickets within the same block, the system
will maintain its integrity.

Long term, create a state-machine representation of the retryable ticket system and
document the invariants related to every state and transition. This should include the
ticket-creation process, the ID scheme, calls to the precompiled contracts, and the gas
refund functionality.

Trail of Bits 98 Offchain Nitro Security Assessment
PUBLIC

Summary of Findings: ArbNode

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Use of time.After() in select statements can lead to
memory leaks

Data
Validation

Low

2 Broadcast client configuration allows the use of
insecure TLS versions

Configuration Low

Trail of Bits 99 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: ArbNode

1. Use of time.After() in select statements can lead to memory leaks

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-ARBNODE-1

Target: ArbNode

Description
ArbNode’s use of the time.After function can lead to memory leaks that worsen over
time and ultimately cause an out-of-memory error.

ArbNode uses time.After in select statements within loops:

for {

err := s.createBlocks(ctx)

if err != nil && !errors.Is(err, context.Canceled) {

log.Error("error creating blocks", "err", err.Error())

}

select {

case <-ctx.Done():

return

case <-s.newMessageNotifier:

case <-time.After(10 * time.Second):

}

}

Figure 1.1: arbnode/transaction_streamer.go#L457-L468

The following parts of the codebase contain that same pattern:

● arbnode/batch_poster.go#L342-L351

● arbnode/delayed_sequencer.go#L172-L181

● arbnode/inbox_reader.go#L62-L71

Trail of Bits 100 Offchain Nitro Security Assessment
PUBLIC

● arbnode/inbox_reader.go#L90-L99

● arbnode/transaction_streamer.go#L457-L466

● arbnode/util.go#L70-L79

● arbnode/util.go#156-L165

● arbnode/util.go#163-L172

● broadcastclient/broadcastclient.go#L2-L81

The use of time.After can cause memory issues because, as its documentation indicates,
“The underlying Timer is not recovered by the garbage collector until the timer fires.”

If the other switch statements are executed, the time.After object will not be directly
freed. If the select statements are called frequently, the amount of memory that is used
may increase over time, disrupting the node’s operation.

Exploit Scenario
Bob is running an Arbitrum node on hardware with a limited amount of memory. The node
eventually requires 10 times the amount of RAM that it used upon its deployment and
stops working.

Recommendations
Short term, replace the time.After function with time.NewTime, and use time.Reset
and time.Stop to control the timer’s progress. This will prevent memory leaks caused by
the use of a timer.

Long term, integrate Semgrep and the semgrep-go rules into the CI pipeline to catch
potential security issues.

References
● A story of a memory leak in GO: How to properly use time.After()

● Golang <-time.After() is not garbage collected before expiry

Trail of Bits 101 Offchain Nitro Security Assessment
PUBLIC

https://pkg.go.dev/time#After
https://github.com/dgryski/semgrep-go
https://www.arangodb.com/2020/09/a-story-of-a-memory-leak-in-go-how-to-properly-use-time-after/
https://medium.com/@oboturov/golang-time-after-is-not-garbage-collected-4cbc94740082

2. Broadcast client configuration allows the use of insecure TLS versions

Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-NITRO-ARBNODE-2

Target: go-ethereum

Description
The broadcast client uses Transport Layer Security (TLS) without setting a minimum TLS
version (a tls.Config.MinVersion value) in ws.Dialer.

timeoutDialer := ws.Dialer{

Timeout: 10 * time.Second,

}

Figure 2.1: broadcastclient/broadcastclient.go#L95-L97

This allows the client to use any TLS version—including versions that are considered
insecure.

Exploit Scenario
Eve forces Bob’s node to connect to the inbox message broadcaster via TLS 1.0. This
enables Eve to compromise the encrypted data sent by Bob’s node and to disrupt the
node’s operations.

Recommendations
Short term, use at least version 1.2 of TLS in the broadcast client.

Long term, integrate CodeQL into the CI pipeline to catch potential security issues.

Trail of Bits 102 Offchain Nitro Security Assessment
PUBLIC

https://codeql.github.com/docs/codeql-cli/analyzing-databases-with-the-codeql-cli/

Summary of Findings: Smart Contracts

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Lack of contract existence check on delegatecall
will result in unexpected behavior

Data
Validation

High

2 Unreachable overflow checks in
currentRequiredStake

Data
Validation

Low

3 ERC20Rollup is incompatible with non-standard
ERC20s

Data
Validation

Informational

4 Integer type inconsistency Data
Validation

Informational

5 Inclusion of dead code Patching Informational

6 Unclear expectations surrounding updates to the
stake requirements

Data
Validation

Medium

7 Process for removing old stakes is not scalable Denial of
Service

Informational

8 Failure to decrement the amount of time
remaining in a challenge

Data
Validation

High

9 Lack of a lower limit on numSteps in a challenge
enables attackers to halt a challenge’s progress

Data
Validation

High

10 Challenges can move from the EXECUTION state
to the BLOCK state

Data
Validation

High

Trail of Bits 103 Offchain Nitro Security Assessment
PUBLIC

Detailed Findings: Smart Contracts

1. Lack of a contract existence check on delegatecall will result in unexpected
behavior

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-SC-1

Target: AdminFallbackProxy

Description
The AdminFallbackProxy contract uses the delegatecall proxy pattern. If the
implementation contract is self-destructed, the proxy may not detect failed executions.

A delegatecall to a destructed contract will return success as part of the EVM
specification. The Solidity documentation includes the following warning:

The low-level call, delegatecall and callcode will return success if the called account is
non-existent, as part of the design of EVM. Existence must be checked prior to calling if
desired.

Figure 1.1: A snippet of the Solidity documentation detailing unexpected behavior related to
delegatecall

AdminFallbackProxy checks for the implementation contract’s existence only when the
implementation is set:

function _implementation()

internal

view

override

returns (address)

{

require(msg.data.length >= 4, "NO_FUNC_SIG");

// if the sender is the proxy's admin, delegate to admin logic

// if the admin is disabled (set to addr zero), all calls will be forwarded

to user logic

address target = _getAdmin() != msg.sender

Trail of Bits 104 Offchain Nitro Security Assessment
PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

? DoubleLogicERC1967Upgrade._getSecondaryImplementation()

: ERC1967Upgrade._getImplementation();

// implementation setters already do an existence check

// require(target.isContract(), "TARGET_NOT_CONTRACT");

return target;

}

Figure 1.2: libraries/AdminFallbackProxy.sol#L136-L151

If the implementation is destroyed after the contract’s deployment, the proxy will not throw
an error; instead, it will return success even though no code was executed.

Exploit Scenario
AdminFallbackProxy’s implementation contract is destroyed. However, each
delegatecall returns success without executing any code.

Recommendations
Short term, implement a contract existence check before any delegatecall. Document
the fact that using suicide and selfdestruct can lead to unexpected behavior, and
prevent future upgrades from introducing these functions.

Long term, carefully review the Solidity documentation, especially the “Warnings” section,
as well as the pitfalls of using the delegatecall proxy pattern.

Trail of Bits 105 Offchain Nitro Security Assessment
PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/

2. Unreachable overflow checks in currentRequiredStake

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-SC-2

Target: RollupUserLogic.sol

Description
The Rollup contracts contain unreachable overflow checks. This dead code increases the
code’s complexity without providing any benefit and can increase the likelihood of
mistakes.

The Rollup contracts require that validators deposit a certain amount of assets to place
stakes (and thus secure the Arbitrum network). The computation of this amount is
performed in currentRequiredStake:

function currentRequiredStake(
uint256 _blockNumber,
uint64 _firstUnresolvedNodeNum,
uint256 _latestCreatedNode

) internal view returns (uint256) {
…
uint256 firstUnresolvedAge = _blockNumber - firstUnresolvedDeadline;
uint256 periodsPassed = (firstUnresolvedAge * 10) / confirmPeriodBlocks;
// Overflow check
if (periodsPassed / 10 >= 255) {

return type(uint256).max;
}
uint256 baseMultiplier = 2**(periodsPassed / 10);
uint256 withNumerator = baseMultiplier * numerators[periodsPassed % 10];
// Overflow check
if (withNumerator / baseMultiplier != numerators[periodsPassed % 10]) {

return type(uint256).max;
}
uint256 multiplier = withNumerator / denominators[periodsPassed % 10];
if (multiplier == 0) {

multiplier = 1;
}
uint256 fullStake = baseStake * multiplier;
// Overflow check
if (fullStake / baseStake != multiplier) {

return type(uint256).max;
}
return fullStake;

}

Trail of Bits 106 Offchain Nitro Security Assessment
PUBLIC

Figure 2.1: Part of the currentRequiredStake function in RollupUserLogic.sol

There are manual overflow checks for most of the arithmetic operations involved in this
calculation, and the function will return 2**256-1 if an overflow is detected. However, these
overflow checks are unreachable, since, as of Solidity 0.8.0, an overflow will automatically
cause a revert.

Exploit Scenario
A Rollup enters a state in which certain operations in currentRequiredStake overflow,
causing an unavoidable revert. Each revert will stop any interactions that depend on the
computation of the required stake.

Recommendations
Short term, consider removing the redundant overflow checks in currentRequiredStake.
Ensure that the arithmetic operations are protected against overflows and implement
testing to ensure that if any corner-case overflows do occur, they cause a revert.

Long term, carefully review the breaking changes introduced by each version of Solidity.

Trail of Bits 107 Offchain Nitro Security Assessment
PUBLIC

https://docs.soliditylang.org/en/develop/080-breaking-changes.html

3. ERC20Rollup is incompatible with nonstandard ERC20s

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-SC-3

Target: RollupUserLogic.sol

Description
The ERC20RollupUserLogic contract is not compatible with ERC20 tokens that do not
return a boolean on calls to the transfer and transferFrom functions.

ERC20RollupUserLogic always checks the values returned by the transferFrom and
transfer functions:

function receiveTokens(uint256 tokenAmount) private {
require(

IERC20Upgradeable(stakeToken).transferFrom(
msg.sender,
address(this),
tokenAmount

),
"TRANSFER_FAIL"

);

Figure 3.1: rollup/RollupUserLogic.sol#L769-L777

This ensures that the rollup contract will work correctly with ERC20 tokens that follow the
standard. However, several tokens (including high-profile tokens) deviate from the ERC20
standard and do not return a boolean on certain calls. (For more information, see “Missing
return value bug — At least 130 tokens affected”.)

Similarly, if the rollup calls a token whose transfer function takes a fee, the rollup may be
left with fewer tokens than expected.

Exploit Scenario
The rollup contract is updated to use USDT, which does not return a boolean on a call to
transferFrom or transfer. As a result, calls to those functions will revert, making it
impossible to move USDT into or out of the rollup.

Recommendations
Short term, document the fact that the rollup is incompatible with nonstandard ERC20
tokens.

Trail of Bits 108 Offchain Nitro Security Assessment
PUBLIC

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Long term, review the Token Integration Checklist and ensure that the system can handle
any deviations from the ERC20 standard.

Trail of Bits 109 Offchain Nitro Security Assessment
PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md

4. Integer type inconsistency

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-SC-4

Target: RollupUserLogic.sol

Description
The ChallengeManager and RollupCore contracts use different integer types to
represent the inbox count at the end of a rollup (afterInboxCount). If the code is
refactored, this inconsistency may lead to an issue.

RollupCore uses a uint256 to represent afterInboxCount:

uint256 afterInboxCount = assertion

.afterState

.globalState

.getInboxPosition();

[...]

// The current inbox message was read

afterInboxCount++;

Figure 4.1: src/rollup/RollupCore.sol#L598-L613

The contract’s getInboxPosition function returns a uint64, which the
ChallengeManager contract uses to represent afterInboxCount:

uint64 maxInboxMessagesRead = startAndEndGlobalStates_[1].getInboxPosition();

if (startAndEndMachineStatuses_[1] == MachineStatus.ERRORED ||

startAndEndGlobalStates_[1].getPositionInMessage() > 0) {

maxInboxMessagesRead++;

}

Figure 4.2: ChallengeManager.sol#L105-L108

In both cases, the variable can be incremented by one.

Currently, RollupCore ensures that the inbox count is less than or equal to the current
inbox size. Without this check, an attacker could create a node asserting that the inbox size

Trail of Bits 110 Offchain Nitro Security Assessment
PUBLIC

at the end of the execution is 2**64-1, and all attempts to challenge the node would be
unsuccessful.

require(

afterInboxCount <= memoryFrame.currentInboxSize,

"INBOX_PAST_END"

);

Figure 4.3: rollup/RollupCore.sol#L615-L618

Exploit Scenario
As part of a codebase update, the constraint requiring that the inbox count be less than or
equal to the current inbox size is removed for gas optimization purposes. This enables Eve
to create a false assertion that no one can challenge.

Recommendations
Short term, use the uint64 type for afterInboxCount in RollupCore. That way, the
same type will be used when a node is created and if it is challenged.

Long term, create a list of the system invariants related to the creation of rollup nodes and
resolution of challenges.

Trail of Bits 111 Offchain Nitro Security Assessment
PUBLIC

5. Inclusion of dead code

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-NITRO-SC-5

Target: Smart contracts

Description
The contracts contain various unused functions. This dead code increases the code’s
complexity and the likelihood of mistakes.

These functions include the following:

● ChallengeManager.timeUsedSinceLastMove(uint64)
(src/challenge/ChallengeManager.sol#282-284)

● Instructions.newNop() (src/state/Instructions.sol#160-162)

● MerkleLib.generateRoot(bytes32[])
(src/libraries/MerkleLib.sol#24-40)

● PcArrayLib.set(PcArray,uint256,uint32)
(src/state/PcArray.sol#13-15)

● RollupCore.max(uint256,uint256)
(src/rollup/RollupCore.sol#557-559)

● SequencerInbox.getTimeBounds()
(src/bridge/SequencerInbox.sol#48-59)

● ValueLib.isNumeric(Value) (src/state/Value.sol#33-35)

● ValueStackLib.hasProvenDepthLessThan(ValueStack,uint256)

● ValueStackLib.isEmpty(ValueStack)
(src/state/ValueStack.sol#37-39)

● CryptographyPrimitives.sha256Block(uint256[2],uint256)
(src/libraries/CryptographyPrimitives.sol#201-330)

Removing certain of these functions would also make it possible to remove certain
contracts. For example, MerkleLib has only two functions: generateRoot, which is never

Trail of Bits 112 Offchain Nitro Security Assessment
PUBLIC

used, and calculateRoot, which is used only once, in the Outbox contract. Removing the
unused function and adding calculateRoot directly to the Outbox contract would allow
for the removal of the library too.

Recommendations
Short term, remove the unused functions listed in this finding. This will simplify the code
and decrease the likelihood of mistakes.

Long term, integrate Slither into the CI pipeline, and use Slither’s dead-code detector,
which found this issue (but be mindful of its current limitations)

Trail of Bits 113 Offchain Nitro Security Assessment
PUBLIC

https://github.com/crytic/slither
https://github.com/crytic/slither/issues/1090

6. Unclear expectations surrounding updates to the stake requirements

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-NITRO-SC-6

Target: RollupUserLogic.sol, RollupAdminLogic.sol

Description
To place stakes on nodes (and thus secure the Arbitrum network), validators must deposit
a certain amount of ether or ERC20 tokens. However, when validators move their stakes
from one node to another, the system does not check whether the required stake has
changed since their initial deposit.

function _newStake(uint256 depositAmount)

internal

onlyValidator

whenNotPaused

{

// Verify that sender is not already a staker

require(!isStaked(msg.sender), "ALREADY_STAKED");

require(!isZombie(msg.sender), "STAKER_IS_ZOMBIE");

require(depositAmount >= currentRequiredStake(), "NOT_ENOUGH_STAKE");

createNewStake(msg.sender, depositAmount);

rollupEventBridge.stakeCreated(msg.sender, latestConfirmed());

}

Figure 6.1: rollup/RollupUserLogic.sol#L128-L141

The amount of this deposit is computed by the currentRequiredStake function and
depends on the base stake and other values:

function currentRequiredStake(

uint256 _blockNumber,

uint64 _firstUnresolvedNodeNum,

uint256 _latestCreatedNode

Trail of Bits 114 Offchain Nitro Security Assessment
PUBLIC

) internal view returns (uint256) {

// If there are no unresolved nodes, then you can use the base stake

if (_firstUnresolvedNodeNum - 1 == _latestCreatedNode) {

return baseStake;

}

…

Figure 6.2: The header of the currentRequiredStake function in
rollup/RollupUserLogic.sol

The rollup admin can change the base stake at any time by calling setBaseStake:

function setBaseStake(uint256 newBaseStake) external override {

baseStake = newBaseStake;

emit OwnerFunctionCalled(12);

}

Figure 6.3: rollup/RollupAdminLogic.sol#L200-L203

However, if a validator already has a stake on a confirmed node, the validator can place a
stake on other existing nodes regardless of whether the current required stake or even the
base stake has changed since the validator’s initial deposit:

function stakeOnExistingNode(uint64 nodeNum, bytes32 nodeHash)

public

onlyValidator

whenNotPaused

{

require(isStaked(msg.sender), "NOT_STAKED");

require(

nodeNum >= firstUnresolvedNode() && nodeNum <= latestNodeCreated(),

"NODE_NUM_OUT_OF_RANGE"

);

Node storage node = getNodeStorage(nodeNum);

require(node.nodeHash == nodeHash, "NODE_REORG");

require(

latestStakedNode(msg.sender) == node.prevNum,

"NOT_STAKED_PREV"

Trail of Bits 115 Offchain Nitro Security Assessment
PUBLIC

);

stakeOnNode(msg.sender, nodeNum);

}

Figure 6.4: rollup/RollupUserLogic.sol#L148-L166

It is unclear whether this loophole in the payment of the required stake is intentional.

Exploit Scenario
Eve participates in the Arbitrum protocol by running multiple validators and has made a
base stake payment for each one. In response to a significant decrease in the value of ETH,
the Arbitrum team increases the base stake amount to make sure that the network is
secure. Eve’s validators are still able to place stakes on nodes even though the payments
Eve made do not meet the new base stake requirement.

Recommendations
Short term, consider adding more checks to ensure that validators have deposited at least
the required stake amount.

Long term, properly document the system invariants related to the rollups and validators
and use a fuzzer like Echidna to ensure that they hold.

Trail of Bits 116 Offchain Nitro Security Assessment
PUBLIC

7. Process for removing old stakes is not scalable

Severity: Informational Difficulty: High

Type: Denial of Service Finding ID: TOB-NITRO-SC-7

Target: RollupUserLogic.sol

Description
To confirm a new node, a validator must remove any old stakes on previous valid nodes
(and any stakes on previous unresolved nodes must be challenged). To do so, the validator
must make a manual call to a smart contract for each old stake that needs to be removed.
This process will not scale to accommodate a large number of stakers.

function confirmNextNode(bytes32 blockHash, bytes32 sendRoot)

external

onlyValidator

whenNotPaused

{

...

// All non-zombie stakers are staked on this node

require(

node.stakerCount == stakerCount() + countStakedZombies(nodeNum),

"NOT_ALL_STAKED"

);

confirmNode(nodeNum, blockHash, sendRoot);

}

Figure 7.1: Part of the confirmNextNode function in RollupUserLogic.sol

If there are validators with stakes in previous valid blocks, the validator seeking to confirm
a new node must call returnOldDeposit to force them to remove their stakes:

function returnOldDeposit(address stakerAddress)

external

{

Trail of Bits 117 Offchain Nitro Security Assessment
PUBLIC

require(

latestStakedNode(stakerAddress) <= latestConfirmed(),

"TOO_RECENT"

);

requireUnchallengedStaker(stakerAddress);

withdrawStaker(stakerAddress);

}

Figure 7.2: The returnOldDeposit function in RollupUserLogic.sol

Because the number of validators is limited by a whitelist, this approach is not currently an
issue. However, the approach would not be practical without a whitelist (or with a larger
whitelist); if there were numerous stakers and no good incentives for them to move their
stakes, validators would need to track which validators were staked on previous nodes and
to call returnOldDeposit for each one of them.

Exploit Scenario
Alice wants to confirm a node. She first needs to perform hundreds of calls to remove old
stakes. After learning of that requirement, she desists from attempting to validate the
Arbitrum network.

Recommendations
Short term, consider either incentivizing stakers to place stakes on the latest node or
providing a function that can perform batched calls to returnOldDeposit on validators
with outdated stakes.

Long term, review the requirements and incentives of the challenge protocol to ensure that
they will scale with the number of users, validators, and states.

Trail of Bits 118 Offchain Nitro Security Assessment
PUBLIC

8. Failure to decrement the amount of time remaining in a challenge

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-SC-8

Target: ChallengeManager.sol

Description
To avoid an infinite loop, challenges should have an overall time limit after which they time
out. Without a timeout feature, an attacker may be able to prevent the progress of a rollup.

When a staker starts a challenge, the protocol starts tracking the amount of time each
participant has spent on the challenge (which is limited to one week).

function createChallenge(

..

) external onlyValidator whenNotPaused {

…

// Calculate upper limit for allowed node proposal time:

uint256 commonEndTime = getNodeStorage(node1.prevNum).firstChildBlock +

// Dispute start: dispute timer for a node starts when its first child

is created

(node1.deadlineBlock - proposedTimes[0]) +

extraChallengeTimeBlocks; // add dispute window to dispute start time

…

Figure 8.1: Part of createChallenge in RollupUserLogic.sol

During a challenge, the timestamp of the last move is used to calculate how much time has
passed:

function timeUsedSinceLastMove(Challenge storage challenge) internal view

returns (uint256) {

return block.timestamp - challenge.lastMoveTimestamp;

}

Figure 8.2: The timeUsedSinceLastMove function in ChallengeLib.sol#L40-L42

The result is compared to the amount of time left:

Trail of Bits 119 Offchain Nitro Security Assessment
PUBLIC

function isTimedOut(Challenge storage challenge) internal view returns (bool) {

return challenge.timeUsedSinceLastMove() > challenge.current.timeLeft;

}

Figure 8.3: The isTimeOut function in ChallengeLib.sol#L44-L46

However, because the timeLeft value is never decremented, each staker can spend one
week (the maximum amount of time) on each step.

Exploit Scenario
Eve creates two validators, which place stakes on two nodes with the same parent. She
uses one validator to start a challenge against the other and crafts the challenge such that
the bisection will have 50 steps. Each time there is a bisection, the amount of time since the
last move is reset, allowing her to delay the challenge’s resolution with each step (i.e., for 50
weeks). No new nodes can be confirmed until the challenge is over, and users will not be
able to withdraw funds from the bridge.

Recommendations
Short term, ensure that timeLeft is decremented in each step of the challenge.

Long term, document the important invariants in the codebase and use randomized testing
to verify that they cannot be broken. (See Appendix G.)

Trail of Bits 120 Offchain Nitro Security Assessment
PUBLIC

9. Lack of a lower limit on numSteps in a challenge enables attackers to halt a
challenge’s progress

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-SC-9

Target: ChallengeManager.sol

Description
There is no lower bound on the number of steps (numSteps) in the “execution challenge”
phase of a challenge. This means that an attacker could create a segment with a length of
zero to prevent his or her opponent from executing any further challenge operations.

The challengeExecution function is called to start the “execution challenge” phase:

function challengeExecution(

uint64 challengeIndex,

ChallengeLib.SegmentSelection calldata selection,

MachineStatus[2] calldata machineStatuses,

bytes32[2] calldata globalStateHashes,

uint256 numSteps

) external takeTurn(challengeIndex, selection) {

[...]

completeBisection(

challengeIndex,

0,

numSteps,

segments

);

Figure 9.1: challenge/ChallengeManager.sol#L169-L226

The new segment length is defined by numSteps, which has no lower bound and can
therefore be set to zero. If it is, the second challenge participant will not be able to perform
any actions and will lose the challenge when it times out.

Trail of Bits 121 Offchain Nitro Security Assessment
PUBLIC

Exploit Scenario
Bob and Eve are involved in a challenge. Eve calls challengeExecution with
numSteps==0. As a result, Bob cannot make any moves, and Eve wins the challenge.

Recommendations
Short term, have the challengeExecution function check that numSteps is non-zero.
This will ensure that the caller cannot create an empty segment.

Long term, document the important invariants in the codebase and use randomized testing
to verify that they cannot be broken. (See Appendix G.)

Trail of Bits 122 Offchain Nitro Security Assessment
PUBLIC

10. Challenges can move from the EXECUTION state to the BLOCK state

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-NITRO-SC-10

Target: ChallengeManager.sol

Description
Because of a lack of machine state validation, a challenge can move from the EXECUTION
state to the BLOCK state and loop between the two states indefinitely. An attacker could
leverage this flaw to prove an incorrect claim.

The challenge state machine assumes that once a challenge has reached the EXECUTION
state, it cannot move back to the BLOCK state:

Figure 10.1: docs/proving/ChallengeManager.md#challengemanager

When a challenge is created, its state is BLOCK:

Trail of Bits 123 Offchain Nitro Security Assessment
PUBLIC

challenge.mode = ChallengeLib.ChallengeMode.BLOCK;

Figure 10.2: challenge/ChallengeManager.sol#L119

When challengeExecution is called, the challenge’s mode is set to EXECUTION:

challenge.mode = ChallengeLib.ChallengeMode.EXECUTION;

Figure 10.3: challenge/ChallengeManager.sol#L219

However, because the challenge’s mode is never read, the challenge can loop between the
BLOCK and EXECUTION states indefinitely. This creates two ways to abuse the protocol:

1. An attacker could start a challenge with an incorrect claim and then start the third
round of bisection positioned on a correct claim. Note, though, that
challengeExecution cannot be called if the status of the machine is Running
(because that would cause blockStateHash to revert). If the other participant was
honest, the attacker could call challengeExecution if the bisection ended on the
first instruction of a block to validate this condition (i.e., that the machine status is
not Running).

2. An attacker could create an infinite loop if both participants in the challenge are
malicious.

Exploit Scenario
Eve creates a rollup in which the first instruction of block 2 leads to an incorrect outcome.
Bob challenges Eve’s rollup. After the bisection in the “execution challenge” phase, the
challenge progresses to the beginning of block 2, and it is Eve’s turn.

Eve is supposed to prove the execution by calling oneStepProveExecution. Instead, she
calls challengeExecution, resetting the challenge in the “challenge execution” phase and
starting the bisection with the correct claim. On his next turn, Bob needs to prove that the
correct execution is impossible, which he cannot do. As a result, Eve wins the challenge.

Recommendations
Short term, have challengeExecution check that the mode of a challenge is BLOCK. This
will prevent challengeExecution from being called multiple times in the same challenge.

Long term, document the important invariants in the codebase and use randomized testing
to verify that they cannot be broken. (See appendix G.)

Trail of Bits 124 Offchain Nitro Security Assessment
PUBLIC

Summary of Recommendations

The Arbitrum Nitro system is a work in progress with multiple planned iterations. Trail of
Bits recommends that Offchain Labs address the findings detailed in this report and take
the following additional steps prior to deployment:

● Freeze the codebase and create centralized documentation on the system
invariants, including those listed in Appendix G.

● Using the fuzzing work detailed in Appendix E as a starting point, integrate fuzz
testing into the development process. Specifically,

○ use the model developed by Trail of Bits and invariants listed in Appendix G
to fuzz the Solidity Rollup and ChallengeManager contracts;

○ perform differential fuzzing to compare the Solidity OSP contracts and the
Arbitrator code; and

○ Fuzz the ArbOS entry points (e.g., the L2 message-parsing process and the
inbox).

● Continue improving the system’s documentation, particularly that on the gas rules,
the parsing of L2 messages, the error statuses (e.g., TooFar), and the aggregators’
expected roles.

● Use a WASM reference implementation as the ground truth in testing and fuzzing of
Nitro’s version of WASM

● Perform additional security reviews focused on the areas highlighted in the
“Coverage Limitations” subsection of the Project Coverage section

● Ensure that all known issues have been fixed and that no TODOs are left.

Trail of Bits 125 Offchain Nitro Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 126 Offchain Nitro Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 127 Offchain Nitro Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 128 Offchain Nitro Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 129 Offchain Nitro Security Assessment
PUBLIC

C. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General
Use the same terminology across the modules. For example, the smart contracts use
sender and inboxSeqNum to refer to the sender and ID of a message
(solgen/src/bridge/Messages.sol#L10-L16), while ArbOS uses poster and
requestId (arbos/incomingmessage.go#L38-L44).

Smart Contracts
Consider using the less than operator in require(zombieNum <= zombieCount(),
"NO_SUCH_ZOMBIE") in AbsRollupUserLogic.removeZombie. This will prevent the use
of a zombie identifier that is invalid. Although the transaction would revert in the next line
if an invalid identifier were used, the user would not receive a proper revert message
(NO_SUCH_ZOMBIE); instead, the user would receive an out-of-bounds Solidity error.

Trail of Bits 130 Offchain Nitro Security Assessment
PUBLIC

D. WAVM Code and Design Recommendations

We identified several discrepancies between the VM implementations of the arbitrator and
the one-step-proof contracts caused by edge cases and undefined behavior. This appendix
contains recommendations on improving the WAVM design and testing.

Specification
● Create a specification for each opcode. While most of the opcodes follow the

WASM specification, it is unclear how the implementations should handle edge
cases and implementation-specific details.

● Explicitly detail how to handle errors. For example, specify whether errors should
trigger the Errored status or whether the state transition should be blocked or
reverted.

● Add pre- and postconditions for each opcode. Having pre- and postconditions
would facilitate the review and testing of the implementations.

Design
● Use the same code architecture for the arbitrator and the one-step-proof

contract. Currently, the one-step-proof opcodes are split across four contracts,
while the arbitrator opcodes are concentrated in one contract. Using the same code
architecture would make it easier to review the code and to identify any divergence.

Testing
● Create standalone comparison tests for every opcode. This would enable the

team to test both implementations of every opcode at the same time. However, it
would be necessary to ensure that the code architecture allows for standalone runs.

● Create a differential fuzzer to identify deviations between the VM
implementations of the arbitrator and the one-step-proof contract. Fuzz every
opcode in standalone. The differential fuzzer will help identify divergences.

Trail of Bits 131 Offchain Nitro Security Assessment
PUBLIC

E. Fuzzer-Based Test Cases for Arbitrum Nitro

Trail of Bits developed test cases to perform fuzz testing of the Arbitrum Nitro codebase
with Echidna, AFL.rs, and go-fuzz. Fuzzing provides a way to explore the input space of
software in order to uncover robustness and correctness issues. We focused our fuzzing
efforts on ArbOS and the arbitrator.

Fuzzing the Rollup System Invariants
To perform property-based testing of the Rollup contracts, Trail of Bits used the original
code to develop a model replicating their behavior in Solidity. It was not possible to use the
unmodified Rollup contract code in this testing, as certain state-related assertions have
conditions that are difficult to explore through random testing (e.g., hash matching). The
smart contract model simplifies the creation of nodes, for example, because it does not
require any conditions on the related assertion itself:

function stakeOnNewNode(
Assertion calldata assertion,
bytes32 expectedNodeHash,
uint256 prevNodeInboxMaxCount

) public {
require(isStaked(msg.sender), "NOT_STAKED");
// Ensure staker is staked on the previous node
uint64 prevNode = latestStakedNode(msg.sender);

{
uint256 timeSinceLastNode = block.number -

getNode(prevNode).createdAtBlock;
// Verify that assertion meets the minimum Delta time requirement
require(timeSinceLastNode >= minimumAssertionPeriod, "TIME_DELTA");

}
createNewNode(assertion, prevNode, prevNodeInboxMaxCount, expectedNodeHash);

stakeOnNode(msg.sender, latestNodeCreated());
}

Figure E.1: Part of an Echidna test for the Rollup contract code

Similarly, it was not possible to use the ChallengeManager code directly in random
testing. Our model makes it possible to perform fuzz testing because an arbitrary winner is
selected for every challenge:

function completeChallenge(address winningStaker, address losingStaker)
external

{
require(winningStaker != losingStaker);
require (NO_CHAL_INDEX != inChallenge(winningStaker, losingStaker));
completeChallengeImpl(winningStaker, losingStaker);

Trail of Bits 132 Offchain Nitro Security Assessment
PUBLIC

https://github.com/crytic/echidna
https://github.com/rust-fuzz/afl.rs
https://github.com/dvyukov/go-fuzz

}

Figure E.2: Part of an Echidna test for the Rollup code

This code allowed us to test system properties including the following:

● If the preconditions are met, createChallenge never reverts.

● If a challenge can be created, then commonEndTime >= proposedTimes[0], and
commonEndTime >= proposedTimes[1].

● If the preconditions are met, removeOldZombies never reverts.

● If the preconditions are met, removeZombie never reverts.

● For every address, x, if isStaked(x), then !isZombie(x).

● For every address, x, if (latestStakedNode(x) <= latestConfirmed()), then
currentChallenge(x) == NO_CHAL_INDEX.

Fuzzing ArbOS to Detect Crashes
Trail of Bits’s fuzz testing covered essential ArbOS functionalities including the following:

● L1 and L2 message parsing

● Inbox parsing and processing

● Delayed-message parsing and processing

● Block production

● Transaction and hook execution

Figure E.3 shows part of a test that injects random inputs into the sequencer and delayed-
message inbox:

func FuzzInbox(input []byte) int {
arbstate.RequireHookedGeth()
chainDb := rawdb.NewMemoryDatabase()
stateRoot, err := arbosState.InitializeArbosInDatabase(chainDb,

&statetransfer.ArbosInitializationInfo{})
if err != nil {

panic(err)
}
statedb, err := state.New(stateRoot, state.NewDatabase(chainDb), nil)
if err != nil {

panic(err)

Trail of Bits 133 Offchain Nitro Security Assessment
PUBLIC

}
…
delayedMessages := [][]byte{input}
seqBatch := make([]byte, 40)
binary.BigEndian.PutUint64(seqBatch[32:], uint64(len(delayedMessages)))
seqBatch = append(seqBatch, input...)
inbox := &inboxBackend{

batchSeqNum: 0,
batches: [][]byte{seqBatch},
positionWithinMessage: 0,
delayedMessages: delayedMessages,

}
_, err = BuildBlock(statedb, genesis, noopChainContext{},

params.ArbitrumOneChainConfig(), inbox)
if err != nil {

// With the fixed header it shouldn't be possible to read a delayed
message,

// and no other type of error should be possible.
panic(err)

}

return 0
}

Figure E.3: Part of a go-fuzz test for ArbOS

Our fuzzing campaigns identified the issues detailed in TOB-NITRO-ARBOS-8,
TOB-NITRO-ARBOS-16, and TOB-NITRO-ARBOS-17.

Fuzzing the Precompiled ArbOS Contracts
Trail of Bits modified the fuzz test code provided by the Offchain Labs team to run the
precompiled contract calls, seeking to increase its coverage. We made the following
important changes:

● Using a non-null from address to send transactions to the precompiled contracts

● Using a from address for chain owners

● Adding expired and unexpired retryable tickets so that the fuzzer would execute
retryable ticket operations correctly

● Using a from address for the beneficiary to enable the fuzzer to cancel retryable
tickets

func FuzzPrecompiles(input []byte) int {
…
_, err = state.RetryableState().CreateRetryable(lastTimestamp, id, timeout,

from, &to, callvalue, beneficiary, calldata)
…

Trail of Bits 134 Offchain Nitro Security Assessment
PUBLIC

id = common.BytesToHash([]byte{1})
_, err = state.RetryableState().CreateRetryable(lastTimestamp, id,

lastTimestamp-1, from, &to, callvalue, beneficiary, calldata)
…
id = common.BytesToHash([]byte{2})
_, err = state.RetryableState().CreateRetryable(lastTimestamp, id,

lastTimestamp-1, from, &to, callvalue, beneficiary, calldata)
…

}

Figure E.4: Part of a go-fuzz test for ArbOS

Fuzzing the External Libraries Used in ArbOS
Certain parts of the ArbOS code rely on external code to parse inputs. While these parts of
the code could technically be reached through other kinds of testing, it is best to use
dedicated fuzz tests to make sure that they are covered extensively.

func FuzzBrotli(input []byte) int {
reader := brotli.NewReader(bytes.NewReader(input))
if _, err := ioutil.ReadAll(reader); err != nil {

return 1
}
return 0

}

func FuzzPublicKeyFromBytes(input []byte) int {
blsSignatures.PublicKeyFromBytes(input, false);
blsSignatures.PublicKeyFromBytes(input, true);
return 0

}

Figure E.5: Two go-fuzz tests dedicated to ArbOS

Setting up Fuzzing in Go
Because the ArbOS code has been rewritten in Go, Trail of Bits tested the code through
go-fuzz, a coverage-guided fuzzing solution for Go packages.

To install and build an ArbOS fuzz test using the FUNC function (FuzzPrecompiles,
FuzzPublicKeyFromBytes, FuzzIncomingMessage, or FuzzBrotli), invoke the
following:

$ go-fuzz-build -libfuzzer -func $FUNC
$ clang -fsanitize=fuzzer reflect-fuzz.a -o fuzz.$FUNC.libfuzzer

Once the build has finished, execute the generated binary directly to start the fuzzing
campaign. The following commands can be used to run the fuzzer with an empty corpus:

Trail of Bits 135 Offchain Nitro Security Assessment
PUBLIC

https://github.com/dvyukov/go-fuzz

$ mkdir corpus.$FUNC
$./fuzz.$FUNC.libfuzzer corpus.$FUNC

See the libFuzzer documentation for information on adjusting the parameters.

Measuring Coverage in Go
We used the code coverage tool provided by the Golang compiler to measure the coverage
of our testing. The first step in this process is selecting a FUNC to use (FuzzPrecompiles,
FuzzPublicKeyFromBytes, FuzzIncomingMessage, or FuzzBrotli) and replacing with
the appropriate name in precompile_fuzz_test.go:

$ FUZZ_CORPUS_DIR=corpus.$FUNC/
$ go test . -cover -coverprofile coverage -coverpkg=$FUNCPKGS

The FUNCPKGS parameter depends on the fuzz test selected by the user. For instance,
when one is using FuzzBrotli, this important parameter should be set to
github.com/andybalholm/brotli. However, when fuzzing an ArbOS-specific package, it
is necessary to specify a local path (e.g., ../../arbos). If an incorrect or invalid package is
used, the tool will not identify any coverage.

After the coverage data has been collected, the user can view it in an HTML file by invoking
the following command:

$ go tool cover -html=coverage

The tool will then open a web browser displaying the coverage results.

Manually annotating branches that would be unreachable under normal circumstances
(i.e., everything but out-of-memory errors) makes it easier to monitor a fuzzing campaign
during development or a security review. By using this approach, we found that the
timeout error branch may be unreachable:

// Gets the timestamp for when ticket will expire
func (con ArbRetryableTx) GetTimeout(c ctx, evm mech, ticketId bytes32) (huge,
error) {

retryableState := c.state.RetryableState()
retryable, err := retryableState.OpenRetryable(ticketId,

evm.Context.Time.Uint64())
if err != nil {

return nil, err
}
if retryable == nil {

return nil, ErrNotFound
}
timeout, err := retryable.Timeout()

Trail of Bits 136 Offchain Nitro Security Assessment
PUBLIC

https://llvm.org/docs/LibFuzzer.html
https://go.dev/blog/cover

if err != nil {
return nil, err

}
return big.NewInt(int64(timeout)), nil

}

Figure E.6: An unreachable branch in GetTimeout

Fuzzing the Arbitrator to Detect Crashes
Trail of Bits also developed fuzz tests covering most of the Arbitrator functionalities,
including the following:

● WASM parsing, validation, and processing

● WASM–WAVM conversion, processing and execution (up to 100 steps)

● Machine status verification, serialization, and hashing

Through our fuzzing campaigns, we found that the Arbitrator is susceptible to crashes
caused by the improper handling of WASM binaries (as detailed in
TOB-NITRO-ARBITATOR-2).

Figure E.7 shows part of a test created to check the robustness of the arbitrator code.

fn main() -> Result<()> {
…
if opts.fuzz {

afl::fuzz!(|data: &[u8]| {
if let Err(err) = fuzz_inner(data, libraries.clone()) {
eprintln!("Non-fatal error: {}", err);
}

});

Ok(())
}
…

}

fn fuzz_inner(bin: &[u8], libraries: Vec<WasmBinary>) -> Result<()> {
let main_bin = parse_binary_from_bytes(bin)?;
let mut mach = Machine::from_binary(

libraries,
main_bin,
false,
false,
GlobalState::default(),
HashMap::default(),
HashMap::default(),

)?;
while !mach.is_halted() && mach.get_steps() < 1000 {

Trail of Bits 137 Offchain Nitro Security Assessment
PUBLIC

mach.serialize_proof();
mach.step();

}

Ok(())
}

Figure E.7: Part of an AFL.rs test for the arbitrator

Executing Di�erential Fuzzing of the WASM and WAVM Code
Trail of Bits also developed a differential fuzzer to compare the arbitrator’s emulation of
WAVM code to an external WASM implementation. We used differential fuzzing to identify
discrepancies between the WASM and WAVM implementation, which could have a severe
impact on the arbitrator's correctness and the validity of its proofs.

We used the wasmi crate for the external WASM implementation. There are several main
reasons that we chose this crate:

● It purportedly provides correct and deterministic WebAssembly execution.

● It is well tested and is actively being developed.

● It has low overhead requirements and offers cross-platform support.

● It can easily be compiled with AFL.rs instrumentation.

Our main goal in developing this differential fuzzer was to evaluate how a WASM execution
succeeds or fails and to identify the last WAVM opcode in an execution. If opcodes do not
match, there is a divergence in the executions.

Building this differential fuzzer was not a straightforward task. We faced a few challenges
stemming from the following discrepancies in the WASM and WAVM implementations:

● The WASM binaries may not be processed in the exact same way as the WAVM
binaries processed by the arbitrator. To mitigate this issue, we needed to ensure
that the WASM imports and exports were processed in the exact same way.

● The WASM reference implementation lacks Arbitrum’s internal instructions, such as
those related to the handling of preimages and the inbox. Thus, we discarded
executions that use Arbitrum’s internal instructions.

● The WASM and WAVM emulations may count steps in different ways, making it more
difficult to compare executions with a limited number of steps. To mitigate that
limitation, after the WASM and WAVM executions ended, we used their return
values or the resultant stacks to compare the machines.

Trail of Bits 138 Offchain Nitro Security Assessment
PUBLIC

https://github.com/paritytech/wasmi

To avoid any issues, we compared executions that do not loop or include any
Arbitrum-specific opcodes. We also accounted for the documented WASM and WAVM
discrepancies to avoid false positives:

let wasmi_start_mach = wasmi_start_mach_instance.unwrap().run_start_with_stack(&mut
NopExternals, &mut StackRecycler::default());
if let Err(trap) = wasmi_start_mach {
println!("This was binary failed with {}", trap);
match (trap.kind().clone(), last_opcode) {

(TrapKind::Unreachable, Opcode::Unreachable) => println!("Unreachable."),
(TrapKind::UnexpectedSignature, Opcode::CallIndirect) =>

println!("UnexpectedSignature."),
(TrapKind::ElemUninitialized, Opcode::CallIndirect) =>

println!("ElemUninitialized."),
(TrapKind::TableAccessOutOfBounds, Opcode::CallIndirect) =>

println!("TableAccessOutOfBounds."),
(TrapKind::MemoryAccessOutOfBounds, Opcode::MemoryLoad { .. }) =>

println!("MemoryAccessOutOfBounds."),
(TrapKind::MemoryAccessOutOfBounds, Opcode::MemoryStore { .. }) =>

println!("MemoryAccessOutOfBounds."),
(TrapKind::DivisionByZero, _) => println!("DivisionByZero."),
(TrapKind::StackOverflow, _) => println!("StackOverflow."),
_ => panic!("This binary execution failed: {} with opcode: {}", trap,

last_opcode.repr()),
}

} else {
if mach.get_status() == MachineStatus::Errored && last_opcode != Opcode::Return {
panic!("Machine should not return error!");

}
}

Figure E.8: Part of an AFL.rs test used in differential fuzzing of the WASM and WAVM
implementations

Setting Up Fuzzing in Rust
Because the arbitrator was developed in Rust, Trail of Bits used AFL.rs to implement fuzz
tests of the component. AFL.rs is an in-process coverage-guided evolutionary fuzzing
engine based on AFL.

To build fuzz tests in the arbitrator code, invoke the following cargo commands:

$ cargo install afl
$ cargo afl build

After the build has finished, use cargo afl fuzz to execute the fuzzer. To run the fuzzer
with a single seed, invoke the following code:

$ mkdir in
$ echo a > in/seed

Trail of Bits 139 Offchain Nitro Security Assessment
PUBLIC

https://github.com/rust-fuzz/afl.rs

$ AFL_MAP_SIZE=500000
cargo afl fuzz -i in -o out target/debug/prover -- --fuzz dummy
afl-fuzz++3.14c based on afl by Michal Zalewski and a large online
community
[+] afl++ is maintained by Marc "van Hauser" Heuse, Heiko "hexcoder"
Eißfeldt, Andrea Fioraldi and Dominik Maier
[+] afl++ is open source, get it at
https://github.com/AFLplusplus/AFLplusplus
[+] NOTE: This is v3.x which changes defaults and behaviours - see
README.md
[*] Getting to work...
[+] Using exponential power schedule (FAST)
[+] Enabled testcache with 50 MB
...

See the AFL.rs documentation for information on adjusting the parameters.

We recommend using a small number of precompiled WASM files from the
arbitrator/prover/test-cases directory as the initial seeds. This will enable the
fuzzer to explore the input space of the arbitrator more efficiently.

Measuring Code Coverage in Rust
Regardless of how inputs are generated, it is important to measure the coverage of a
fuzzing campaign. To measure the coverage of our Rust fuzz testing, we used grcov’s
source-based code coverage feature. It is important to disable the AFL.rs instrumentation
to avoid conflicts with the coverage measurement code. This requires compiling the
codebase without using AFL.rs:

$ export CARGO_INCREMENTAL=0
$ export RUSTFLAGS="-Zprofile -Ccodegen-units=1 -Copt-level=0
-Clink-dead-code -Coverflow-checks=off -Zpanic_abort_tests
-Cpanic=abort"
$ export RUSTDOCFLAGS="-Cpanic=abort"
$ cargo build

After the build is complete, use the resulting binary to execute each file from the corpus. To
generate an HTML coverage report, use the following command:

$ grcov . -s . --binary-path ./target/debug/ -t html --branch
--ignore-not-existing -o ./target/debug/coverage/

Trail of Bits 140 Offchain Nitro Security Assessment
PUBLIC

https://rust-fuzz.github.io/book/afl/tutorial.html
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov

The result will be available in ./target/debug/coverage/index.html.

Integrating Fuzzing and Coverage Measurement into the Development
Cycle
Once the fuzzing process has been tuned to be fast and efficient, it should be integrated
into the development cycle and used to catch bugs. We recommend using a CI system and
adopting the following process:

1. After running the initial fuzzing campaign, save the corpus generated for every test.
Trail of Bits provided these initial corpora.

2. Re-run the fuzzing campaign for each internal milestone, new feature, or public
release. Start with the current corpora for each test and run the campaign for at
least for 24 hours.1

3. Update the corpora to include the new inputs generated by the fuzzer.

Note that over time, the corpora will come to represent thousands of CPU hours of
refinement and be a very valuable tool for efficiently guiding code coverage during fuzz
testing. However, because an attacker could use the corpora to quickly identify vulnerable
code, we recommend storing the fuzzing corpora in an access-controlled location rather
than in a public repository. Some CI systems allow maintainers to keep a cache to
accelerate building and testing. The corpora can be included in such a cache if they are not
very large.

As an alternative to in-house fuzz testing, the Offchain Labs team could use OSS-Fuzz.
OSS-Fuzz makes it possible to execute automated fuzzing campaigns using Google's
extensive testing infrastructure. OSS-Fuzz is free for widely used open-source software. We
believe OSS-Fuzz would accept the Arbitrium Nitro system as a project.

Using OSS-Fuzz is beneficial because Google provides access to all of its infrastructure for
free and will notify a project’s maintainers any time that a change in the source code
introduces a new issue. Moreover, the reports it provides include essential information
such as information on test case minimization and backtraces. However, there are some
downsides: If OSS-Fuzz discovers critical issues, Google employees will learn of the issues
before the project’s own developers. Google policy also requires bug reports to be made
public after 90 days, which may not be in Offchain Labs’s best interests. The team should
weigh these risks against the benefits when deciding whether to request use of Google’s
free fuzzing resources.

1 For more on fuzz-driven development, see the CppCon 2017 talk delivered by Kostya Serebryany of
Google.

Trail of Bits 141 Offchain Nitro Security Assessment
PUBLIC

https://github.com/google/oss-fuzz
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf

Trail of Bits 142 Offchain Nitro Security Assessment
PUBLIC

F. Detecting Destructible Contracts

Trail of Bits wrote a custom Slither script to ensure that the Nitro smart contracts’
upgradeability does not lead to the arbitrary destruction of the contracts’ implementation.
We recommend adding this script to the CI pipeline to prevent future code updates from
introducing vulnerabilities.

from slither import Slither

from slither.core.declarations import SolidityFunction

from slither.slithir.operations import LowLevelCall, SolidityCall

def main():

sl = Slither(".", ignore_compile=True)

for compilation_unit in sl.compilation_units:

for contract in compilation_unit.contracts:

if contract.name == "TransparentUpgradeableProxy":

continue

for function in contract.functions_entry_points:

if function.is_constructor:

continue

for ir in function.all_slithir_operations():

if isinstance(ir, LowLevelCall) and ir.function_name in [

"delegatecall",

"codecall",

]:

if "onlyProxy" in [m.name for m in function.modifiers]:

continue

print(

f"{function} uses an unprocted delegatecall:

{ir.node.source_mapping_str}"

)

exit(-1)

elif isinstance(ir, SolidityCall) and ir.function in [

SolidityFunction("selfdestruct(address)"),

SolidityFunction("suicide(address)"),

Trail of Bits 143 Offchain Nitro Security Assessment
PUBLIC

https://github.com/crytic/slither

]:

print(

f"{function} uses selfdestruct:

{ir.node.source_mapping_str}"

)

exit(-1)

print("No issue was found")

if __name__ == "__main__":

main()

Figure F.1: Check_destruct.py

Trail of Bits 144 Offchain Nitro Security Assessment
PUBLIC

G. System Invariants

The Arbitrum Nitro system is a moving target that relies on complex invariants. The
maintenance of certain of these invariants depends on data validation performed by
multiple components (e.g., the smart contracts and ArbOS); this inherent complexity makes
it difficult to review the codebase and to avoid breaking the invariants during code updates.
We recommend that Offchain Labs freeze the codebase and document all known system
invariants. The documentation on each invariant should include information on the
components it is related to and the ways in which it is checked (e.g., manualfly or through
unit tests, static analysis, fuzzing, etc.); any broken invariants should be identified as such.

Certain of the invariants identified during our review are listed below. This list includes
invariants that are broken or could not be confirmed to hold.

Smart Contracts
General

● With the exception of the proxy, the contracts cannot self-destruct. (Checked
via static analysis.)

○ See Appendix F.

Challenge
● If the machine’s status is RUNNING, the challenge will time out. (Checked

manually.)

○ The challengeExecution function calls blockStateHash, which will revert
if the status is RUNNING
(challenge/ChallengeManager.sol#L179-L182).

● If neither participant advances a challenge, it will time out. (Invariant broken.)

○ See TOB-NITRO-SC-8.

● Every challenge has a unique index that is different from the index of
NO_CHALLENGE. (Checked manually.)

○ The index is based on the totalChallengesCreated counter, which will
always be greater than zero (challenge/ChallengeManager.sol#L98).

Rollup
● A node cannot challenge itself. (Checked manually.)

Trail of Bits 145 Offchain Nitro Security Assessment
PUBLIC

○ When a challenge is created, the nodes involved in the challenge have
different identifiers (rollup/RollupUserLogic.sol#L288).

● For every address, x, if isStaked(x), then !isZombie(x). (Checked manually.)

○ This applies to each address, x, to which a stake is moved or for which a
stake is created (rollup/RollupUserLogic.sol#L135).

● For every address, x, if (latestStakedNode(x) <= latestConfirmed()), then
currentChallenge(x) == NO_CHAL_INDEX. (Checked manually.)

○ A validator staked on a node older than the latest confirmed node cannot
start a challenge (RollupUserLogic.sol#L290). Similarly, no new nodes
can be confirmed if any validators remain staked on an old node or involved
in a challenge over an old node (RollupUserLogic.sol#L116-L119).

Rollup - Challenge
● Block number operations use uint64 values. (Checked manually.)

○ src/rollup/RollupLib.sol#L96

○ challenge/ChallengeManager.sol#L87

● Inbox count operations use uint64 values. (Invariant broken.)

○ See TOB-NITRO-SC-4.

● The first bisection starts with a length of at least one. (Checked manually.)

○ When a node is created, it has at least one block
(rollup/RollupUserLogic.sol#L200,
challenge/ChallengeManager.sol#L129).

● A node challenge starts in the FINISHED state. (Checked manually.)

○ Nodes are created only if the status at the start of the challenge is FINISHED
(rollup/RollupUserLogic.sol#L206).

● A node challenge ends in the FINISHED or ERRORED state. (Checked manually.)

○ Nodes are created only if the status at the end of the challenge is FINISHED
or ERRORED (rollup/RollupCore.sol#L577-L580).

ArbOS Bridge
● When the root is updated, the updated version contains the previous leaves at

the same index. (Unconfirmed.)

Trail of Bits 146 Offchain Nitro Security Assessment
PUBLIC

○ The ArbOS Merkle tree construction maintains subtrees from left to right.

ArbOS Smart Contracts
● There is no more than one retryable ticket in each block. (Checked manually.)

○ This invariant is necessary because the hash of a retryable ticket is the hash
of the block’s header (arbstate/inbox.go#L284-L299).

WAVM
● ArbOS’s WASM implementation follows the WASM specification. (Checked

through differential fuzzing.)

○ See Appendix E.

ArbOS
● Retryable tickets can be executed correctly only once. (Checked manually.)

○ When a retryable ticket is executed without reverting, it is deleted at the end
of the transaction hook.

● The amount of ETH in L2 is equal to the amount of ETH indicated by the
expectedBalanceDelta value. (Invariant broken.)

○ See TOB-NITRO-GETH-3, TOB-NITRO-ARBOS-3, and TOB-NITRO-ARBOS-7.

Trail of Bits 147 Offchain Nitro Security Assessment
PUBLIC

